Pytorch 中 CAM绘制热度图

本篇主要介绍基于类激活映射(Class Activation Mapping, CAM)的热度图绘制

算法原理出自论文: Learning Deep Features for Discriminative Localization

框架结构如下图所示:

Pytorch 中 CAM绘制热度图_第1张图片

作者在文中指出当前网络中普遍使用的GAP层,能够有效的反映目标物体周围的

特征;故作者采用了全连接层的特征来与CNN 网络的最后一个卷积层进行点乘运

算,用以增加feature map中目标物体的权重。

具体代码如下:

# simple implementation of CAM in PyTorch for the networks such as ResNet, DenseNet, SqueezeNet, Inception

import io
import requests
from PIL import Image
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
import numpy as np
import cv2
import pdb

# input image
LABELS_URL = 'https://s3.amazonaws.com/outcome-blog/imagenet/labels.json'
IMG_URL = 'http://media.mlive.com/news_impact/photo/9933031-large.jpg'

# networks such as googlenet, resnet, densenet already use global average pooling at the end, so CAM could be used directly.
model_id = 1
if model_id == 1:
    net = models.squeezenet1_1(pretrained=True)
    finalconv_name = 'features' # this is the last conv layer of the network
elif model_id == 2:
    net = models.resnet18(pretrained=True)
    finalconv_name = 'layer4'
elif model_id == 3:
    net = models.densenet161(pretrained=True)
    finalconv_name = 'features'

net.eval()

# hook the feature extractor
features_blobs = []
def hook_feature(module, input, output):
    features_blobs.append(output.data.cpu().numpy())

net._modules.get(finalconv_name).register_forward_hook(hook_feature)

# get the softmax weight
params = list(net.parameters())
weight_softmax = np.squeeze(params[-2].data.numpy())

def returnCAM(feature_conv, weight_softmax, class_idx):
    # generate the class activation maps upsample to 256x256
    size_upsample = (256, 256)
    bz, nc, h, w = feature_conv.shape
    output_cam = []
    for idx in class_idx:
        cam = weight_softmax[idx].dot(feature_conv.reshape((nc, h*w)))
        cam = cam.reshape(h, w)
        cam = cam - np.min(cam)
        cam_img = cam / np.max(cam)
        cam_img = np.uint8(255 * cam_img)
        output_cam.append(cv2.resize(cam_img, size_upsample))
    return output_cam


normalize = transforms.Normalize(
   mean=[0.485, 0.456, 0.406],
   std=[0.229, 0.224, 0.225]
)
preprocess = transforms.Compose([
   transforms.Resize((224,224)),
   transforms.ToTensor(),
   normalize
])

response = requests.get(IMG_URL)
img_pil = Image.open(io.BytesIO(response.content))
img_pil.save('test.jpg')

img_tensor = preprocess(img_pil)
img_variable = Variable(img_tensor.unsqueeze(0))
logit = net(img_variable)

# download the imagenet category list
classes = {int(key):value for (key, value)
          in requests.get(LABELS_URL).json().items()}

h_x = F.softmax(logit, dim=1).data.squeeze()
probs, idx = h_x.sort(0, True)
probs = probs.numpy()
idx = idx.numpy()

# output the prediction
for i in range(0, 5):
    print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))

# generate class activation mapping for the top1 prediction
CAMs = returnCAM(features_blobs[0], weight_softmax, [idx[0]])

# render the CAM and output
print('output CAM.jpg for the top1 prediction: %s'%classes[idx[0]])
img = cv2.imread('test.jpg')
height, width, _ = img.shape
heatmap = cv2.applyColorMap(cv2.resize(CAMs[0],(width, height)), cv2.COLORMAP_JET)
result = heatmap * 0.3 + img * 0.5
cv2.imwrite('CAM.jpg', result)

运行结果:

Pytorch 中 CAM绘制热度图_第2张图片    Pytorch 中 CAM绘制热度图_第3张图片

你可能感兴趣的:(ML,AI)