本文不对 NameServer 与 Broker、Producer 集群、Consumer 集群的网络通信做详细解读(该系列后续专门进行讲解)
本文重点关注 NameServer 作为 MQ 集群的配置中心存储什么信息。
NameserController 是 NameServer 模块的核心控制类。
NamesrvConfig,主要指定 nameserver 的相关配置属性:
private final ScheduledExecutorService scheduledExecutorService = Executors.
newSingleThreadScheduledExecutor(new ThreadFactoryImpl("NSScheduledThread"));
NameServer 定时任务执行线程池,默认定时执行两个任务:
读取或变更NameServer的配置属性,加载 NamesrvConfig 中配置的配置文件到内存,此类一个亮点就是使用轻量级的非线程安全容器,再结合读写锁对资源读写进行保护。尽最大程度提高线程的并发度。
NameServer 数据的载体,记录 Broker、Topic 等信息。
private final static long BROKER_CHANNEL_EXPIRED_TIME = 1000 * 60 * 2; //@1
private final ReadWriteLock lock = new ReentrantReadWriteLock(); //@2
private final HashMap> topicQueueTable; //@3
private final HashMap brokerAddrTable; //@4
private final HashMap > clusterAddrTable; //@5
private final HashMap brokerLiveTable; //@6
private final HashMap/* Filter Server */> filterServerTable; //@7
代码@1,NameServer 与 Broker 空闲时长,默认2分钟,在2分钟内 Nameserver 没有收到 Broker 的心跳包,则关闭该连接。
代码@2,读写锁,用来保护非线程安全容器 HashMap。
代码@3,topicQueueTable,主题与队列关系,记录一个主题的队列分布在哪些Broker上,每个Broker上存在该主题的队列个数。QueueData队列描述信息,对应如下属性:
private String brokerName; // broker的名称
private int readQueueNums; // 读队列个数
private int writeQueueNums; // 写队列个数
private int perm; // 权限操作
private int topicSynFlag; // 同步复制还是异步复制
代码@4,brokerAddrTable,所有 Broker 信息,使用 brokerName 当key, BrokerData 信息描述每一个 broker 信息。
// broker所属集群
private String cluster;
// broker name
private String brokerName;
//// broker 对应的IP:Port,brokerId=0表示Master,大于0表示Slave。
private HashMap brokerAddrs;
代码@5,clusterAddrTable,broker 集群信息,每个集群包含哪些 Broker。
代码@6,brokerLiveTable,当前存活的 Broker,该信息不是实时的,NameServer 每10S扫描一次所有的 broker,根据心跳包的时间得知 broker的状态,该机制也是导致当一个 Broker 进程假死后,消息生产者无法立即感知,可能继续向其发送消息,导致失败(非高可用),如何保证消息发送高可用,请关关注该系列后续文章。
BrokerHouseKeepingService 实现 ChannelEventListener接口,可以说是通道在发送异常时的回调方法(Nameserver与 Broker的连接通道在关闭、通道发送异常、通道空闲时),在上述数据结构中移除已宕机的 Broker。
public interface ChannelEventListener {
void onChannelConnect(final String remoteAddr, final Channel channel);
void onChannelClose(final String remoteAddr, final Channel channel);
void onChannelException(final String remoteAddr, final Channel channel);
void onChannelIdle(final String remoteAddr, final Channel channel);
}
这三个属性与网络通信有关,NameServer 与 Broker、Producer、Consume 之间的网络通信,基于 Netty实现。本文借这个机会再次探究 Netty 线程模型与 Netty实战技巧。
源码分析网络通讯之前,我们关注如下问题:
首先我们先过一下NettyServerConfig中的配置属性:
private int listenPort = 8888;
private int serverWorkerThreads = 8;
private int serverCallbackExecutorThreads = 0;
private int serverSelectorThreads = 3;
private int serverOnewaySemaphoreValue = 256;
private int serverAsyncSemaphoreValue = 64;
private int serverChannelMaxIdleTimeSeconds = 120;
private int serverSocketSndBufSize = NettySystemConfig.socketSndbufSize;
private int serverSocketRcvBufSize = NettySystemConfig.socketRcvbufSize;
private boolean serverPooledByteBufAllocatorEnable = true;
我们带着上面的疑问开始源码分析 org.apache.rocketmq.remoting.netty.NettyRemotingServer。
1、 serverWorkerThreads
含义:业务线程池的线程个数,RocketMQ 按任务类型,每个任务类型会拥有一个专门的线程池,比如发送消息,消费消息,另外再加一个其他线程池(默认的业务线程池)。默认业务线程池,采用 fixed 类型,其线程名称:RemotingExecutorThread_。
作用范围:该参数目前主要用于 NameServer 的默认业务线程池,处理诸如 broker、producer,consume 与 NameServer 的所有交互命令。
源码来源:org.apache.rocketmq.namesrv.NamesrvController
public boolean initialize() {
this.kvConfigManager.load();
this.remotingServer = new NettyRemotingServer(this.nettyServerConfig, this.brokerHousekeepingService);
this.remotingExecutor =
Executors.newFixedThreadPool(nettyServerConfig.getServerWorkerThreads(), new ThreadFactoryImpl("RemotingExecutorThread_")); // @1
this.registerProcessor(); // @2
this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
NamesrvController.this.routeInfoManager.scanNotActiveBroker();
}
}, 5, 10, TimeUnit.SECONDS);
this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
@Override
public void run() {
NamesrvController.this.kvConfigManager.printAllPeriodically();
}
}, 1, 10, TimeUnit.MINUTES);
return true;
}
private void registerProcessor() {
if (namesrvConfig.isClusterTest()) {
this.remotingServer.registerDefaultProcessor(new ClusterTestRequestProcessor(this, namesrvConfig.getProductEnvName()),
this.remotingExecutor);
} else {
this.remotingServer.registerDefaultProcessor(new DefaultRequestProcessor(this), this.remotingExecutor);
}
}
代码@1,创建一个线程容量为 serverWorkerThreads 的固定长度的线程池,该线程池供 DefaultRequestProcessor 类使用,实现具体的默认的请求命令处理。
代码@2,就是将 DefaultRequestProcessor 与代码@1创建的线程池绑定在一起。
具体的命令调用类:org.apache.rocketmq.remoting.netty.NettyRemotingAbstract。
/**
* Process incoming request command issued by remote peer.
* @param ctx channel handler context.
* @param cmd request command.
*/
public void processRequestCommand(final ChannelHandlerContext ctx, final RemotingCommand cmd) {
final Pair matched = this.processorTable.get(cmd.getCode());
final Pair pair = null == matched ? this.defaultRequestProcessor : matched;
final int opaque = cmd.getOpaque();
if (pair != null) {
Runnable run = new Runnable() {
@Override
public void run() {
try {
RPCHook rpcHook = NettyRemotingAbstract.this.getRPCHook();
if (rpcHook != null) {
rpcHook.doBeforeRequest(RemotingHelper.parseChannelRemoteAddr(ctx.channel()), cmd);
}
final RemotingCommand response = pair.getObject1().processRequest(ctx, cmd);
if (rpcHook != null) {
rpcHook.doAfterResponse(RemotingHelper.parseChannelRemoteAddr(ctx.channel()), cmd, response);
}
if (!cmd.isOnewayRPC()) {
if (response != null) {
response.setOpaque(opaque);
response.markResponseType();
try {
ctx.writeAndFlush(response);
} catch (Throwable e) {
PLOG.error("process request over, but response failed", e);
PLOG.error(cmd.toString());
PLOG.error(response.toString());
}
} else {
}
}
} catch (Throwable e) {
PLOG.error("process request exception", e);
PLOG.error(cmd.toString());
if (!cmd.isOnewayRPC()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_ERROR, //
RemotingHelper.exceptionSimpleDesc(e));
response.setOpaque(opaque);
ctx.writeAndFlush(response);
}
}
}
};
if (pair.getObject1().rejectRequest()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_BUSY,
"[REJECTREQUEST]system busy, start flow control for a while");
response.setOpaque(opaque);
ctx.writeAndFlush(response);
return;
}
try {
final RequestTask requestTask = new RequestTask(run, ctx.channel(), cmd);
pair.getObject2().submit(requestTask);
} catch (RejectedExecutionException e) {
if ((System.currentTimeMillis() % 10000) == 0) {
PLOG.warn(RemotingHelper.parseChannelRemoteAddr(ctx.channel()) //
+ ", too many requests and system thread pool busy, RejectedExecutionException " //
+ pair.getObject2().toString() //
+ " request code: " + cmd.getCode());
}
if (!cmd.isOnewayRPC()) {
final RemotingCommand response = RemotingCommand.createResponseCommand(RemotingSysResponseCode.SYSTEM_BUSY,
"[OVERLOAD]system busy, start flow control for a while");
response.setOpaque(opaque);
ctx.writeAndFlush(response);
}
}
} else {
String error = " request type " + cmd.getCode() + " not supported";
final RemotingCommand response =
RemotingCommand.createResponseCommand(RemotingSysResponseCode.REQUEST_CODE_NOT_SUPPORTED, error);
response.setOpaque(opaque);
ctx.writeAndFlush(response);
PLOG.error(RemotingHelper.parseChannelRemoteAddr(ctx.channel()) + error);
}
}
该方法比较简单,该方法其实就是一个具体命令的处理模板(模板方法),具体的命令实现由各个子类实现,该类的主要责任就是将命令封装成一个线程对象,然后丢到线程池去执行。
2、serverCallbackExecutorThreads
含义:Netty public 任务线程池格式。线程名称:NettyServerPublicExecutor_。
源码来源:org.apache.rocketmq.remoting.netty.NettyRemotingServer。
3、serverSelectorThreads
含义:Netty IO 线程个数,Selector 所在的线程个数,也就主从 Reactor 模型中的从 Reactor 线程数量 。
线程名称:NettyServerNIOSelector_。
作用范围:broker,product,consume 服务端的IO线程数量。
源码来源:org.apache.rocketmq.remoting.netty.NettyRemotingServer。
4、serverOnewaySemaphoreValue、 serverAsyncSemaphoreValue
含义:服务端 oneWay(单向执行)、异步调用的信号量(并发度)。
源码来源:org.apache.rocketmq.remoting.netty.NettyRemotingServer。
org.apache.rocketmq.remoting.netty.NettyRemotingAbstract:
备注:单向(Oneway)发送特点为只负责发送消息,不等待服务器回应且没有回调函数触发,即只发送请求不等待应答。
应用场景:适用于某些耗时非常短,但对可靠性要求并不高的场景,例如日志收集。
5、 其他配置参数
// 通道空闲时间,默认120S, 通过Netty的IdleStateHandler实现
private int serverChannelMaxIdleTimeSeconds = 120;
// socket发送缓存区大小
private int serverSocketSndBufSize = NettySystemConfig.socketSndbufSize;
// socket接收缓存区大小
private int serverSocketRcvBufSize = NettySystemConfig.socketRcvbufSize;
// 是否使用PooledByteBuf(可重用,缓存ByteBuf)
private boolean serverPooledByteBufAllocatorEnable = true;
本文关主要分析了 Nameserver 作为 RocketMQ 的注册中心,主要存储了哪些信息,如何存储以及其核心参数。
备注:本文是《RocketMQ技术内幕》的前期素材,建议关注笔者的书籍:《RocketMQ技术内幕》。