垃圾分类,指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称。分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用;然而我们在日常生活中认为对垃圾分类还是有些不知所措的,对干垃圾、湿垃圾……分的不是很清楚,由此我们就想到了使用深度学习的方法进行分类。
本篇博文主要会带领大家进行数据的预处理、网络搭建、模型训练、模型测试
1. 获取数据集
这里笔者已经为大家提供了一个比较完整的数据集,所以大家不必再自己去收集数据了
数据集链接:https://pan.baidu.com/s/1OhA7yQt9evqNIP5CIPjdgw
提取码:Z5A1
如下为数据集中的部分数据展示
这里就不过多的展示了,因为有些图片比较的不雅
ok,不说题外话了,我们继续
2.预处理数据集
import torch,visdom,time
import os,csv,random,glob
from PIL import Image
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
class Data(Dataset):
def __init__(self,root,resize,model):
super(Data, self).__init__()
self.root=root
self.resize=resize
self.name2label={} # {0,1,2……}
for name in sorted(os.listdir(os.path.join(root))):
if not os.path.isdir(os.path.join(root, name)): # if path not exists that create
continue
self.name2label[name] = len(self.name2label.keys())
self.images,self.labels=self.load_csv('images.csv') # load data of label and images
# dividing data
if model=='train':
self.images=self.images[:int(0.6*len(self.images))]
self.labels=self.labels[:int(0.6*len(self.labels))]
if model=='verify':
self.images=self.images[int(0.6*len(self.images)):int(0.8*len(self.images))]
self.labels=self.labels[int(0.6*len(self.labels)):int(0.8*len(self.labels))]
else:
self.images=self.images[int(0.8*len(self.images)):]
self.labels=self.labels[int(0.8*len(self.labels)):]
def load_csv(self,filename):
if not os.path.exists(os.path.join(self.root, filename)):
images = []
for name in self.name2label.keys():
images += glob.glob(os.path.join(self.root, name, '*.jpg'))
# images += glob.glob(os.path.join(self.root, name, '*.png'))
# images += glob.glob(os.path.join(self.root, name, '*.jpeg'))
print(len(images), images)
random.shuffle(images)
with open(os.path.join(self.root, filename), mode='w', newline='') as f:
writer = csv.writer(f)
for img in images:
name = img.split(os.sep)[-2]
label = self.name2label[name]
writer.writerow([img, label])
print('writen into csv file:', filename)
images, labels = [], []
with open(os.path.join(self.root, filename)) as f:
reader = csv.reader(f)
for row in reader:
img, label = row
label = int(label) # trans int for label
images.append(img)
labels.append(label)
assert len(images) == len(labels) # for len(images) and len(labels) is eq
return images, labels
def __len__(self):
return len(self.images)
def normalize(self, x_hat):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# x_hat = (x-mean)/std
# x = x_hat*std = mean
# x: [c, h, w]
# mean: [3] => [3, 1, 1]
mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1)
std = torch.tensor(std).unsqueeze(1).unsqueeze(1)
# print(mean.shape, std.shape)
x = x_hat * std + mean
return x
def __getitem__(self, idx):
img, label = self.images[idx], self.labels[idx]
tf = transforms.Compose([
lambda x:Image.open(x).convert('RGB'), # string path= > image data
transforms.Resize((int(self.resize*1.25), int(self.resize*1.25))),
transforms.RandomRotation(15),
transforms.CenterCrop(self.resize),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
img = tf(img)
label = torch.tensor(label)
return img, label
def main():
# show data
viz = visdom.Visdom()
db = Data('data', 64, 'train')
x,y = next(iter(db))
print('sample:', x.shape, y.shape, y)
viz.image(db.normalize(x), win='sample_x', opts=dict(title='sample_x'))
loader = DataLoader(db, batch_size=32, shuffle=True, num_workers=8)
for x,y in loader:
viz.images(db.normalize(x), nrow=8, win='batch', opts=dict(title='batch'))
viz.text(str(y.numpy()), win='label', opts=dict(title='batch-y'))
time.sleep(10)
if __name__ == '__main__':
main()
最终处理后展示
说明一下,笔者这里使用可视化工具visdom将数据进行了可视化,因此得以以上述的方式显示出来
import torch
from torch import nn
from torch.nn import functional as F
class ResBlk(nn.Module):
"""
resnet block
"""
def __init__(self, ch_in, ch_out, stride=1):
"""
:param ch_in:
:param ch_out:
"""
super(ResBlk, self).__init__()
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential()
if ch_out != ch_in:
# [b, ch_in, h, w] => [b, ch_out, h, w]
self.extra = nn.Sequential(
nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride),
nn.BatchNorm2d(ch_out)
)
def forward(self, x):
"""
:param x: [b, ch, h, w]
:return:
"""
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
# short cut.
# extra module: [b, ch_in, h, w] => [b, ch_out, h, w]
# element-wise add:
out = self.extra(x) + out
out = F.relu(out)
return out
class ResNet18(nn.Module):
def __init__(self, num_class):
super(ResNet18, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, stride=3, padding=0),
nn.BatchNorm2d(16)
)
# followed 4 blocks
# [b, 16, h, w] => [b, 32, h ,w]
self.blk1 = ResBlk(16, 32, stride=3)
# [b, 32, h, w] => [b, 64, h, w]
self.blk2 = ResBlk(32, 64, stride=3)
# # [b, 64, h, w] => [b, 128, h, w]
self.blk3 = ResBlk(64, 128, stride=2)
# # [b, 128, h, w] => [b, 256, h, w]
self.blk4 = ResBlk(128, 256, stride=2)
# [b, 256, 7, 7]
self.outlayer = nn.Linear(256*3*3, num_class)
def forward(self, x):
"""
:param x:
:return:
"""
x = F.relu(self.conv1(x))
# [b, 64, h, w] => [b, 1024, h, w]
x = self.blk1(x)
x = self.blk2(x)
x = self.blk3(x)
x = self.blk4(x)
# print(x.shape)
x = x.view(x.size(0), -1)
x = self.outlayer(x)
return x
def main():
blk = ResBlk(64, 128)
tmp = torch.randn(2, 64, 224, 224)
out = blk(tmp)
print('block:', out.shape)
model = ResNet18(5)
tmp = torch.randn(2, 3, 224, 224)
out = model(tmp)
print('resnet:', out.shape)
p = sum(map(lambda p:p.numel(), model.parameters()))
print('parameters size:', p)
if __name__ == '__main__':
main()
import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoader
from Data_Pre import Data
# from resnet import ResNet18
from torchvision.models import resnet18
from utils import Flatten
batchsz = 32
lr = 1e-3
epochs = 20
device = torch.device('cuda')
torch.manual_seed(1234)
train_db = Data('data', 224, model='train')
val_db = Data('data', 224, model='verify')
test_db = Data('data', 224, model='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
viz = visdom.Visdom()
def evalute(model, loader):
model.eval()
correct = 0
total = len(loader.dataset)
for x, y in loader:
x, y = x.to(device), y.to(device)
with torch.no_grad():
logits = model(x)
pred = logits.argmax(dim=1)
correct += torch.eq(pred, y).sum().float().item()
return correct / total
def main():
# model = ResNet18(5).to(device)
trained_model = resnet18(pretrained=True)
model = nn.Sequential(*list(trained_model.children())[:-1], # [b, 512, 1, 1]
Flatten(), # [b, 512, 1, 1] => [b, 512]
nn.Linear(512, 5)
).to(device)
# x = torch.randn(2, 3, 224, 224)
# print(model(x).shape)
optimizer = optim.Adam(model.parameters(), lr=lr)
criteon = nn.CrossEntropyLoss()
best_acc, best_epoch = 0, 0
global_step = 0
viz.line([0], [-1], win='loss', opts=dict(title='loss'))
viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
for epoch in range(epochs):
for step, (x, y) in enumerate(train_loader):
# x: [b, 3, 224, 224], y: [b]
x, y = x.to(device), y.to(device)
model.train()
logits = model(x)
loss = criteon(logits, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
viz.line([loss.item()], [global_step], win='loss', update='append')
global_step += 1
if epoch % 1 == 0:
val_acc = evalute(model, val_loader)
if val_acc > best_acc:
best_epoch = epoch
best_acc = val_acc
torch.save(model.state_dict(), 'best.mdl')
viz.line([val_acc], [global_step], win='val_acc', update='append')
print('best acc:', best_acc, 'best epoch:', best_epoch)
model.load_state_dict(torch.load('best.mdl'))
print('loaded from ckpt!')
test_acc = evalute(model, test_loader)
print('test acc:', test_acc)
if __name__ == '__main__':
main()