- Hbase深入浅出
天才之上
数据存储Hbase大数据存储
目录HBase在大数据生态圈中的位置HBase与传统关系数据库的区别HBase相关的模块以及HBase表格的特性HBase的使用建议Phoenix的使用总结HBase在大数据生态圈中的位置提到大数据的存储,大多数人首先联想到的是Hadoop和Hadoop中的HDFS模块。大家熟知的Spark、以及Hadoop的MapReduce,可以理解为一种计算框架。而HDFS,我们可以认为是为计算框架服务的存
- python编写mapreduce job教程
weixin_49526058
pythonmapreducehadoop
在Python中实现MapReduce作业,通常可以使用mrjob库,这是一个用于编写和执行MapReduce作业的Python库。它可以运行在本地模式或Hadoop集群上。以下是一个简单的MapReduce示例,它计算文本文件中每个单词的出现次数。安装mrjob首先,你需要安装mrjob库。可以通过pip安装:pipinstallmrjobMapReduce示例:计算单词频率1.创建一个MapR
- 数据驱动业务增长,E-MapReduce 真实案例解析
Anna_Tong
mapreduce大数据云计算数据分析阿里云实时计算数据驱动
在大数据时代,数据已经成为企业核心竞争力的关键因素之一。无论是电商、金融、物流还是制造业,企业都在探索如何更高效地处理、分析和利用海量数据,以实现精准决策、优化运营并提升业务增长。然而,面对PB级甚至EB级的数据规模,传统的本地大数据计算架构往往难以满足性能和成本的要求。如何在保证计算效率的同时降低运维成本,成为企业数据战略中的关键挑战。阿里云E-MapReduce(EMR)作为一款云原生的大数据
- Hadoop 的分布式缓存机制是如何实现的?如何在大规模集群中优化缓存性能?
晚夜微雨问海棠呀
分布式hadoop缓存
Hadoop的分布式缓存机制是一种用于在MapReduce任务中高效分发和访问文件的机制。通过分布式缓存,用户可以将小文件(如配置文件、字典文件等)分发到各个计算节点,从而提高任务的执行效率。分布式缓存的工作原理文件上传:用户将需要缓存的文件上传到HDFS(HadoopDistributedFileSystem)。文件路径可以在作业配置中指定。作业提交:在提交MapReduce作业时,用户可以通过
- 深入HBase——引入
黄雪超
大数据基础#深入HBase大数据数据库hbase
引入前面我们通过深入HDFS到深入MapReduce,从设计和落地,去深入了解了大数据最底层的基石——存储与计算是如何实现的。这个专栏则开始来看大数据的三驾马车中最后一个。通过前面我们对于GFS和MapReduce论文实现的了解,我们知道GFS在数据写入时,只对顺序写入有比较弱的一致性保障,而对于数据读取,虽然GFS支持随机读取,但在当时的硬件条件下,实际上也是支撑不了真正的高并发读取的;此外,M
- 腾讯云大数据套件TBDS与阿里云大数据能力产品对比
奋力向前123
数据库java人工智能腾讯云大数据阿里云
前言博主在接触大数据方向研究的时候是在2016年,那时候正是大数据概念非常火热的一个时间段,最著名的Google的3篇论文。GoogleFS、MapReduce、BigTable,奠定了大数据框架产品的基础。Google文件系统,计算框架和存储框架。往后所有的大数据产品和过程域无一不是在三个模块的基础上进行搭建,迭代,完善。我们最开始使用的都是开源的产品,比如hadoop,HDSF,MAPRedu
- hadoop 1.0 基本概念了解
fenggfa
hadoophadoop大数据mapreduce
hadoop基本概念了解common:hadoop组件公共常用工具类Avro:Avro是用于数据序列化的系统。不同机器之间数据交流的保障。MapReduce:MapReduce是一种编程模型,分为Map函数和Reduce函数。Map函数负责将输入数据转化为中间值,中间值再通过Reduce函数转化成输出数据HDFS:HDFS是一个分布式文件系统。通过一次写入,多次读出来实现。Chukwa:Chukw
- 深入理解Hadoop 1.0.0源码架构及组件实现
隔壁王医生
本文还有配套的精品资源,点击获取简介:Hadoop1.0.0作为大数据处理的开源框架,在业界有广泛应用。该版本包含核心分布式文件系统HDFS、MapReduce计算模型、Common工具库等关键组件。通过分析源码,可深入理解这些组件的设计和实现细节,包括数据复制、任务调度、容错机制以及系统配置管理。本课程旨在指导学生和开发者深入学习Hadoop的核心原理和实践应用,为其在大数据领域的进一步研究和开
- hadoop之MapReduce:片和块
哒啵Q297
hadoopmapreduce大数据
假如我现在500M这样的数据,如何存储?500M=128M+128M+128M+116M分为四个块进行存储。计算的时候,是按照片儿计算的,而不是块儿。块是物理概念,一个块就是128M,妥妥的,毋庸置疑。片是逻辑概念,一个片大约等于一个块。假如我现在需要计算一个300M的文件,这个时候启动多少个MapTask任务?答案是有多少个片儿,就启动多少个任务。一个片儿约等于一个块,但是最大可以128M*1.
- Hadoop智能房屋推荐系统 爬虫1w+ 协同过滤余弦函数推荐 代码+视频教程+文档
小盼江
课题设计Hadoop课设hadoop爬虫大数据
Hadoop智能房屋推荐系统爬虫1w+协同过滤余弦函数推荐带视频教程毕设设计课题设计【Hadoop项目】1.data.csv上传到hadoop集群环境2.data.csv数据清洗3.MapReducer数据汇总处理,将Reducer的结果数据保存到本地Mysql数据库中4.Springboot+Echarts+MySQL显示数据分析结果分析数据维度如下:【房屋分类热度】【各分类下房屋数量及占比】【
- Hadoop解决数据倾斜方法?思维导图 代码示例(java 架构)
用心去追梦
hadoopjava架构
数据倾斜(DataSkew)是分布式计算框架中常见的问题,特别是在MapReduce作业里。当某些Mapper或Reducer处理的数据量远大于其他节点时,就会导致整体任务执行时间延长,并且资源利用率不均衡。为了解决这个问题,Hadoop提供了多种策略和技术手段来优化数据分布和任务分配。以下是关于Hadoop解决数据倾斜的方法总结、思维导图描述以及Java代码示例。Hadoop解决数据倾斜方法概述
- MapReduce是什么?
头发那是一根不剩了
mapreduce大数据
MapReduce是一种编程模型,最初由Google提出,旨在处理大规模数据集。它是分布式计算的一个重要概念,通常用于处理海量数据并进行并行计算。MapReduce的基本思想是将计算任务分解为两个阶段:Map阶段和Reduce阶段。Map阶段:在这个阶段,输入的数据会被拆分成多个片段,每个片段会被分配给不同的计算节点(也叫做“Mapper”)。每个Mapper处理一部分数据并输出键值对(key-v
- MapReduce简单应用(二)——去重、排序和平均
梦醒沉醉
Hadoopmapreduce大数据
目录1.数据去重1.1原理1.2pom.xml中依赖配置1.3工具类util1.4去重代码1.5结果2.数据排序2.1原理2.2排序代码2.3结果3.计算均值3.1原理3.2自定义序列化数据类型DecimalWritable3.3计算平均值3.4结果参考1.数据去重 待去重的两个文本内容如下。2012-3-1a2012-3-2b2012-3-3c2012-3-4d2012-3-5a2012-3-
- 【MapReduce】分布式计算框架MapReduce
桥路丶
大数据Hadoop快速入门bigdata
分布式计算框架MapReduce什么是MapReduce?MapReduce起源是2004年10月Google发表了MapReduce论文,之后由MikeCafarella在Nutch(爬虫项目)中实现了MapReduce的功能。它的设计初衷是解决搜索引擎中大规模网页数据的并行处理问题,之后成为ApacheHadoop的核心子项目。它是一个面向批处理的分布式计算框架;在分布式环境中,MapRedu
- Hive自定义UDF函数
浊酒南街
#大数据系列三hiveUDF
目录一、UDF概述二、UDF种类三、如何自定义UDF四、自定义实现UDF和UDTF一、JSONObject解析JSON对象二、JSONArray解析JSON数组对象三、两个UDF的配合使用过程一、UDF概述UDF全称:User-DefinedFunctions,即用户自定义函数,在HiveSQL编译成MapReduce任务时,执行java方法,类似于像MapReduce执行过程中加入一个插件,方便
- MapReduce的代码编写
hjy1821
MapReduceMapReduce代码WordCount字数统计代码MapReduce编写MapReduce使用案例
MapReduce用例代码的编写流程1)函数入口①首先创建配置对象Configuration,用于加载配置文件的信息;②创建一个Job对象,通过getInstance()函数设置当前main函数所在的类,设置后运行代码可以找到函数的入口;③设置MapReduce的输入输出路径用于输入数据和输出计算的数据结果;注意若要是输出的路径在集群中已经存在,需要操作HDFS进行判断与删除,在此处要建立一个HD
- 一文了解mapreduce及工作原理
TEL浅笑嫣然
openstack大数据hadoop笔记
目录前言-MR概述1.HadoopMapReduce设计思想及优缺点设计思想优点:缺点:2.HadoopMapReduce核心思想3.MapReduce工作机制剖析MapReduce运行机制过程描述第一阶段:作业提交(图1-4步)第二阶段:作业初始化(图5-7步)第三阶段:任务的分配(图8)第四阶段:任务的执行(图9-11)第五阶段:作业完成Tips知识点:进度和状态更新4.MR各组成部分工作机制
- 大数据-267 实时数仓 - ODS Lambda架构 Kappa架构 核心思想
m0_74823336
面试学习路线阿里巴巴大数据架构
点一下关注吧!!!非常感谢!!持续更新!!!Java篇开始了!MyBatis更新完毕目前开始更新Spring,一起深入浅出!目前已经更新到了:Hadoop(已更完)HDFS(已更完)MapReduce(已更完)Hive(已更完)Flume(已更完)Sqoop(已更完)Zookeeper(已更完)HBase(已更完)Redis(已更完)Kafka(已更完)Spark(已更完)Flink(已更完)Cl
- Hbase基础
yandao
hadoophbasebigdatahadoop
1.HBase简介HBASE理论HBase是一个基于Hadoop的分布式、面向列的开源数据库,对大数据实现了随机定位和实时读写。HBase是基于Google的Bigtable技术实现的,GoogleBigtable利用GFS作为其文件存储系统,HBase利用Hadoop的HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase利用Hadoop的M
- nginx+flume网络流量日志实时数据分析实战_日志数据分析(1)
2401_84182578
程序员nginxflume数据分析
得到visits模型hadoopjar/export/data/mapreduce/web_log.jarcn.itcast.bigdata.weblog.clickstream.ClickStreamVisit网络日志数据分析-数据加载对于日志数据的分析,Hive也分为三层:ods层、dw层、app层创建数据库createdatabaseifnotexistsweb_log_ods;create
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- HIVE常见面试题
兔子宇航员0301
数据开发小白成长笔记hivehadoop数据仓库
1.简述hiveHive是一个构建在Hadoop之上的数据仓库工具,主要用于处理和查询存储在HDFS上的大规模数据。Hive通过将结构化的数据文件映射成表,并提供类SQL的查询功能,使得用户可以通过编写SQL语句来进行数据分析,而不需要编写复杂的MapReduce程序2.简述hive读写文件机制Hive读写文件机制主要依赖Hadoop的HDFS(分布式文件系统)和MapReduce(计算框架)。
- 使用python实现Hadoop中MapReduce
qq_44801116
Pythonpythonhadoopmapreduce
Hadoop包含HDFS(分布式文件系统)、YARN(资源管理器)、MapReduce(编程模型)。一、三大组件的简介(1)HDFS(HadoopDistributedFileSystem):HDFS是Hadoop的分布式文件系统,它是将大规模数据分散存储在多个节点上的基础。主要负责数据的存储和管理,可以将大数据集分成多个数据块,并将数据块分配到不同的计算节点上存储,提高数据的可靠性和处理效率。旨
- 【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
Want595
Python大数据采集与分析大数据pythonhadoop
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell)搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn)本机PyCharm连接CentOS虚拟机在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了Hadoop+MapReduce+Yarn+Python
- Hadoop1.0和2.0的主要区别
web_15534274656
javahadoop大数据hdfsdubbojava-zookeeper
Hadoop1.0指的是版本为ApacheHadoop0.20.x、1.x或者CDH3系列的Hadoop,组件主要由HDFS和MapReduce两个系统组成,HDFS是一个分布式文件存储系统,MapReduce是一个离线处理框架,分为三部分,运行时环境为JobTracker和TaskTracker,编程模型为Map映射和Reduce规约,数据处理引擎为MapTask和ReduceTask,Hado
- Hadoop1.0-HDFS介绍
szjianzr
HADOOP介绍hadoopHDFS
Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统。最核心的模块包括HadoopCommon、HDFS与MapReduce。HDFS是Hadoop分布式文件系统(HadoopDistributedFileSystem)的缩写,为分布式计算存储提供了底层支持。采用Java语言开发,可以部署在多种普通的廉价机器上,以集群处理数量积达到大型主机处理性能。一、HDFS基本概念1、Bl
- Python如何解决“No module named ‘torch’”错误
程序媛一枚~
Python进阶pytorchpytorchtorchpython
Python如何解决“Nomodulenamed‘torch’”错误1.选择版本:稳定版本or预览版本2.了解你的操作系统3.工具选择4.如何与PyTorch通信5.CPU还是GPU?6.PyTorch安装7.常见错误疑难解答这篇博客将学习如何摆脱持续的“Nomodulenamed‘torch’”错误。如果您是一名崭露头角的程序员,偶然发现错误消息“Nomodulenamed‘torch’”可能会
- 大数据相关开源项目汇总
万里浮云
大数据
调度与管理服务Azkaban是一款基于Java编写的任务调度系统任务调度,来自LinkedIn公司,用于管理他们的Hadoop批处理工作流。Azkaban根据工作的依赖性进行排序,提供友好的Web用户界面来维护和跟踪用户的工作流程。YARN是一种新的Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,解决了旧MapReduce框架的性能瓶颈。它的基本思想是把资源
- 为什么我的CDH不用Hue,改用Scriptis了?
兔子那么可爱
大数据UI开源数据分析中间件
理性谈谈Hue的优缺点平时做数据开发用的比较多的是CDH的Hue,Hue提供了对接Hadoop平台的UI界面,可以对Hbase数据进行直接操作,执行Mapreducer任务时有可视化的执行界面,进行数据报表和Oozie定时任务,可以说还是非常的方便的。但是用久了就会发现Hue也有许多痛点。数据表不能直接方便地导出Excel,降低了工作效率UDF和函数支持较差,没有自带的数据分析常用UDF函数库,也
- Hadoop3.2.1安装-单机模式和伪分布式模式
花菜回锅肉
大数据hadoophdfs大数据linux
Hadoop入门篇概述Hadoop是使用Java编写的,是为了解决大数据场景下的两大问题,分布式存储和分布式处理而诞生的,包含很多组件、套件。需要运行在Linux系统下。主要包括HDFS和MapReduce两个组件。下载安装下载下载地址https://archive.apache.org/dist/hadoop/common/选择合适自己的tar.gz版本下载,该文档选择V3.2.1。Hadoop
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep