《高性能MySQL》总结

MySQL架构与历史

本章内容部分来自 mysql优化原理学习 的图片和章节摘要。

MySQL 逻辑架构

如下MySQL的逻辑架构图
《高性能MySQL》总结_第1张图片
MySQL逻辑架构整体分为三层,最上层为客户端层,并非MySQL所独有,诸如:连接处理、授权认证、安全等功能均在这一层处理。

MySQL大多数核心服务均在中间这一层(包括:查询缓存、解析器、优化器等),包括查询解析、分析、优化、缓存、内置函数(比如:时间、数学、加密等函数)。所有的跨存储引擎的功能也在这一层实现:存储过程、触发器、视图等。

最下层为存储引擎,其负责MySQL中的数据存储和提取。和Linux下的文件系统类似,每种存储引擎都有其优势和劣势。中间的服务层通过API与存储引擎通信,这些API接口屏蔽了不同存储引擎间的差异。

连接管理与安全性

每个客户端连接都会在服务器进程中拥有一个线程,通常我用连接池的概率来理解,服务端会缓存连接池的线程,达到线程复用减少线程创建、销毁过程的资源开销。

当客户端连接到MySQL服务器时,服务器需要对其进行认证。认证基于用户名、主机信息、端口、密码等并判断用户的执行权限。

优化与执行

我们可以先看下Mysql的执行过程,如下图:
《高性能MySQL》总结_第2张图片
图中带圈的序号都是可优化的点

客户端/服务端通信协议

MySQL客户端/服务端通信协议是“半双工”的:在任一时刻,要么是服务器向客户端发送数据,要么是客户端向服务器发送数据,这两个动作不能同时发生。一旦一端开始发送消息,另一端要接收完整个消息才能响应它,所以我们无法也无须将一个消息切成小块独立发送,也没有办法进行流量控制。客户端用一个单独的数据包将查询请求发送给服务器,所以当查询语句很长的时候,需要设置max_allowed_packet参数。但是需要注意的是,如果查询实在是太大,服务端会拒绝接收更多数据并抛出异常。

与之相反的是,服务器响应给用户的数据通常会很多,由多个数据包组成。但是当服务器响应客户端请求时,客户端必须完整的接收整个返回结果,而不能简单的只取前面几条结果,然后让服务器停止发送。因而在实际开发中,尽量保持查询简单且只返回必需的数据,减小通信间数据包的大小和数量是一个非常好的习惯,这也是查询中尽量避免使用SELECT *以及加上LIMIT限制的原因之一。

查询缓存

在解析一个查询语句前,如果查询缓存是打开的,那么MySQL会检查这个查询语句是否命中查询缓存中的数据。如果当前查询恰好命中查询缓存,在检查一次用户权限后直接返回缓存中的结果。这种情况下,查询不会被解析,也不会生成执行计划,更不会执行。MySQL将缓存存放在一个引用表(不要理解成table,可以认为是类似于HashMap的数据结构),通过一个哈希值索引,这个哈希值通过查询本身、当前要查询的数据库、客户端协议版本号等一些可能影响结果的信息计算得来。所以两个查询在任何字符上的不同(例如:空格、注释),都会导致缓存不会命中。

如果查询中包含任何用户自定义函数、存储函数、用户变量、临时表、MySQL库中的系统表,其查询结果都不会被缓存。比如函数NOW()或者CURRENT_DATE()会因为不同的查询时间,返回不同的查询结果,再比如包含CURRENT_USER或者CONNECION_ID()的查询语句会因为不同的用户而返回不同的结果,将这样的查询结果缓存起来没有任何的意义。

既然是缓存,就会失效,那查询缓存何时失效呢?MySQL的查询缓存系统会跟踪查询中涉及的每个表,如果这些表(数据或结构)发生变化,那么和这张表相关的所有缓存数据都将失效。正因为如此,在任何的写操作时,MySQL必须将对应表的所有缓存都设置为失效。如果查询缓存非常大或者碎片很多,这个操作就可能带来很大的系统消耗,甚至导致系统僵死一会儿。而且查询缓存对系统的额外消耗也不仅仅在写操作,读操作也不例外:

任何的查询语句在开始之前都必须经过检查,即使这条SQL语句永远不会命中缓存
如果查询结果可以被缓存,那么执行完成后,会将结果存入缓存,也会带来额外的系统消耗
基于此,我们要知道并不是什么情况下查询缓存都会提高系统性能,缓存和失效都会带来额外消耗,只有当缓存带来的资源节约大于其本身消耗的资源时,才会给系统带来性能提升。但要如何评估打开缓存是否能够带来性能提升是一件非常困难的事情,也不在本文讨论的范畴内。如果系统确实存在一些性能问题,可以尝试打开查询缓存,并在数据库设计上做一些优化,比如:

用多个小表代替一个大表,注意不要过度设计
批量插入代替循环单条插入
合理控制缓存空间大小,一般来说其大小设置为几十兆比较合适
可以通过SQL_CACHE和SQL_NO_CACHE来控制某个查询语句是否需要进行缓存
最后的忠告是不要轻易打开查询缓存,特别是写密集型应用。如果你实在是忍不住,可以将query_cache_type设置为DEMAND,这时只有加入SQL_CACHE的查询才会走缓存,其他查询则不会,这样可以非常自由地控制哪些查询需要被缓存。

当然查询缓存系统本身是非常复杂的,这里讨论的也只是很小的一部分,其他更深入的话题,比如:缓存是如何使用内存的?如何控制内存的碎片化?事务对查询缓存有何影响等等,读者可以自行阅读相关资料,这里权当抛砖引玉吧。

语法解析和预处理

MySQL通过关键字将SQL语句进行解析,并生成一颗对应的解析树。这个过程解析器主要通过语法规则来验证和解析。比如SQL中是否使用了错误的关键字或者关键字的顺序是否正确等等。预处理则会根据MySQL规则进一步检查解析树是否合法。比如检查要查询的数据表和数据列是否存在等。

查询优化

经过前面的步骤生成的语法树被认为是合法的了,并且由优化器将其转化成查询计划。多数情况下,一条查询可以有很多种执行方式,最后都返回相应的结果。优化器的作用就是找到这其中最好的执行计划。MySQL使用基于成本的优化器,它尝试预测一个查询使用某种执行计划时的成本,并选择其中成本最小的一个。在MySQL可以通过查询当前会话的last_query_cost的值来得到其计算当前查询的成本。

select * from table limit 10;
show status like ‘last_query_cost’;
有非常多的原因会导致MySQL选择错误的执行计划,比如统计信息不准确、不会考虑不受其控制的操作成本(用户自定义函数、存储过程)、MySQL认为的最优跟我们想的不一样(我们希望执行时间尽可能短,但MySQL值选择它认为成本小的,但成本小并不意味着执行时间短)等等。

MySQL的查询优化器是一个非常复杂的部件,它使用了非常多的优化策略来生成一个最优的执行计划:

  • 重新定义表的关联顺序(多张表关联查询时,并不一定按照SQL中指定的顺序进行,但有一些技巧可以指定关联顺序)
  • 优化MIN()和MAX()函数(找某列的最小值,如果该列有索引,只需要查找B+Tree索引最左端,反之则可以找到最大值,具体原理见下文)
  • 提前终止查询(比如:使用Limit时,查找到满足数量的结果集后会立即终止查询)
  • 优化排序(在老版本MySQL会使用两次传输排序,即先读取行指针和需要排序的字段在内存中对其排序,然后再根据排序 结果去读取数据行,而新版本采用的是单次传输排序,也就是一次读取所有的数据行,然后根据给定的列排序。对于I/O密集型应用,效率会高很多)
    随着MySQL的不断发展,优化器使用的优化策略也在不断的进化,这里仅仅介绍几个非常常用且容易理解的优化策略,其他的优化策略,大家自行查阅吧。

查询执行引擎

在完成解析和优化阶段以后,MySQL会生成对应的执行计划,查询执行引擎根据执行计划给出的指令逐步执行得出结果。整个执行过程的大部分操作均是通过调用存储引擎实现的接口来完成,这些接口被称为handler API。查询过程中的每一张表由一个handler实例表示。实际上,MySQL在查询优化阶段就为每一张表创建了一个handler实例,优化器可以根据这些实例的接口来获取表的相关信息,包括表的所有列名、索引统计信息等。存储引擎接口提供了非常丰富的功能,但其底层仅有几十个接口,这些接口像搭积木一样完成了一次查询的大部分操作。

返回结果给客户端

查询执行的最后一个阶段就是将结果返回给客户端。即使查询不到数据,MySQL仍然会返回这个查询的相关信息,比如该查询影响到的行数以及执行时间等。如果查询缓存被打开且这个查询可以被缓存,MySQL也会将结果存放到缓存中。

结果集返回客户端是一个增量且逐步返回的过程。有可能MySQL在生成第一条结果时,就开始向客户端逐步返回结果集了。这样服务端就无须存储太多结果而消耗过多内存,也可以让客户端第一时间获得返回结果。需要注意的是,结果集中的每一行都会以一个满足①中所描述的通信协议的数据包发送,再通过TCP协议进行传输,在传输过程中,可能对MySQL的数据包进行缓存然后批量发送。

总结查询过程分为下面几个步骤:

  • 客户端向MySQL服务器发送一条查询请求
  • 服务器首先检查查询缓存,如果命中缓存,则立刻返回存储在缓存中的结果。否则进入下一阶段
  • 服务器进行SQL解析、预处理、再由优化器生成对应的执行计划
  • MySQL根据执行计划,调用存储引擎的API来执行查询
  • 将结果返回给客户端,同时缓存查询结果

并发控制

读写锁

读锁(read lock)是共享锁,互不阻塞,多个客户端可以同时读取同一个资源;
写锁(write lock)排他锁,写锁会阻塞其他的读写锁,只能有一个用户执行写入数据。

锁粒度

由于加锁会消耗而外的资源和开销,因此会有不同的锁策略和使用不同的锁粒度来提高性能。

表锁

表锁(table lock)是MySQL最基本的锁策略,开销小,以表作为单位锁定。

行级锁

行级锁(row lock)可以最大程度处理并发,开销大,InnoDB 和 XtraDB使用,行级锁只在存储引擎层实现。

事务

了解事务需先了解事务的ACID概念,事务经典例子就是银行应用。
原子性(atomicity)
一致性(consistency)
隔离性(isolation)
持久性(durability)

隔离级别

read uncommited(未提交读)
可读到不一致性的数据,即:脏读
read commited(提交读)
不可重复读
repeat read(可重复读)
幻读
serializable(可串行化)

MySQL服务器性能优化

##最常见的性能相关的服务请求是:

  1. 如何确定服务器达到了最佳状态
  2. 找出某条语句为什么执行不够快
  3. 以及诊断被用户描述成:“停顿”,“堆积”,“卡死”的某些间歇性故障

什么是性能

  • 完成某件事所花费的时间度量,性能即响应时间(《高性能mysql》的定义)
  • 花费更多时间进行测试90%,10%的时间用来修改东西
    ##什么是性能优化?
  • 降低响应时间
  • 测量响应时间花在哪
  • 判断策略是否正确

##性能优化步骤

  • 进行性能剖析测量任务花费时间,对结果进行排序
  • 理解性能剖析找出值得优化的查询、异常情况
  • 用好的工具自动获取相关信息(pt-query-digest)

性能瓶颈可以能的影响因素:

  • 外部资源,比如调用了外部的Web服务或搜索引擎
  • 应用需要处理大量的数据,比如分析一个超大的xml文件
  • 在循环中执行昂贵的操作,比如滥用正则表达式
  • 使用低效的算法,比如暴力搜索来查找列表中的项

剖析MySQL查询

  • 捕获慢查询日志
  • 分析查询日志(强烈建议的方法,性价比最高)
  • V/M方差均值比(variance-to-mean ratio)离差指数高说明对应查询的变化大,值得优化
  • 剖析查询命令和工具(show status,show profile、explain)

InnoDB

Architecture《高性能MySQL》总结_第3张图片

总结

我们认为定义性能最有效的方式是响应时间
高质量的响应时间测试是优化的基础

你可能感兴趣的:(mysql)