本博文IDE为vs2013
OpenCV2.49
话不多说,先看视频演示(20S演示):
如下:
https://v.youku.com/v_show/id_XMjYzMzkxMTYyMA==.html?spm=a2h0w.8278793.2736843.4#paction
程序截图如下:
如何来用OpenCV来实现能。
下面给出OpenCV实现人脸检测的一般步骤:
1.加载人脸检测器
2.开启摄像头
3.对图片进行灰度处理(其实可以不处理,上图中原图的标题栏就是未进行灰度处理进行的检测,这里的灰度是为下节人脸识别打基础)
4.对图片进行直方图均衡化(其实可以不处理,上图中原图的标题栏就是未进行灰度处理进行的检测和灰度图是为进行均衡化识别,这里的均衡化是为下节人脸识别打基础)
5.人脸检测
总结下,如果单单只要人脸检测,可以的步骤是1,2,5
本博客把1,2,5,
1,2,3,5
1,2,3,4,5
都演示了出来。
下面是完整的代码,本代码还有大量注释,在此不再具体说明哪个函数有什么用。
下面上源码:
#include
#include
#include
using namespace cv;
void Pic2Gray(Mat camerFrame,Mat &gray)
{
//普通台式机3通道BGR,移动设备为4通道
if (camerFrame.channels() == 3)
{
cvtColor(camerFrame, gray, CV_BGR2GRAY);
}
else if (camerFrame.channels() == 4)
{
cvtColor(camerFrame, gray, CV_BGRA2GRAY);
}
else
gray = camerFrame;
}
int main()
{
//加载Haar或LBP对象或人脸检测器
CascadeClassifier faceDetector;
std::string faceCascadeFilename = "haarcascade_frontalface_default.xml";
//友好错误信息提示
try{
faceDetector.load(faceCascadeFilename);
}
catch (cv::Exception e){}
if (faceDetector.empty())
{
std::cerr << "脸部检测器不能加载 (";
std::cerr << faceCascadeFilename << ")!" << std::endl;
exit(1);
}
//打开摄像头
VideoCapture camera(0);
while (true)
{
Mat camerFrame;
camera >> camerFrame;
if (camerFrame.empty())
{
std::cerr << "无法获取摄像头图像" << std::endl;
getchar();
exit(1);
}
Mat displayedFrame(camerFrame.size(),CV_8UC3);
//人脸检测只试用于灰度图像
Mat gray;
Pic2Gray(camerFrame, gray);
//直方图均匀化(改善图像的对比度和亮度)
Mat equalizedImg;
equalizeHist(gray, equalizedImg);
//人脸检测用Cascade Classifier::detectMultiScale来进行人脸检测
int flags = CASCADE_FIND_BIGGEST_OBJECT|CASCADE_DO_ROUGH_SEARCH; //只检测脸最大的人
//int flags = CASCADE_SCALE_IMAGE; //检测多个人
Size minFeatureSize(30, 30);
float searchScaleFactor = 1.1f;
int minNeighbors = 4;
std::vector faces;
faceDetector.detectMultiScale(equalizedImg, faces, searchScaleFactor, minNeighbors, flags, minFeatureSize);
//画矩形框
cv::Mat face;
cv::Point text_lb;
for (size_t i = 0; i < faces.size(); i++)
{
if (faces[i].height > 0 && faces[i].width > 0)
{
face = gray(faces[i]);
text_lb = cv::Point(faces[i].x, faces[i].y);
cv::rectangle(equalizedImg, faces[i], cv::Scalar(255, 0, 0), 1, 8, 0);
cv::rectangle(gray, faces[i], cv::Scalar(255, 0, 0), 1, 8, 0);
cv::rectangle(camerFrame, faces[i], cv::Scalar(255, 0, 0), 1, 8, 0);
}
}
imshow("直方图均匀化", equalizedImg);
imshow("灰度化", gray);
imshow("原图", camerFrame);
waitKey(20);
}
getchar();
return 0;
}