Connector容器主要负责解析socket请求,在tomcat中的源码位于org.apache.catalina.connector和org.apache.coyote包路径下;通过上两节的分析,我们知道了Connector是Service的子容器,而Service又是Server的子容器。在server.xml文件中配置,然后在Catalina类中通过Digester完成实例化。在server.xml中默认配置了两种Connector的实现,分别用来处理Http请求和AJP请求。其实Connector的实现一共有以下三种:
1、Http Connector:解析HTTP请求,又分为BIO Http Connector和NIO Http Connector,即阻塞IO Connector和非阻塞IO Connector。本文主要分析NIO Http Connector的实现过程。
2、AJP:基于AJP协议,用于Tomcat与HTTP服务器通信定制的协议,能提供较高的通信速度和效率。如与Apache服务器集成时,采用这个协议。
3、APR HTTP Connector:用C实现,通过JNI调用的。主要提升对静态资源(如HTML、图片、CSS、JS等)的访问性能。
具体要使用哪种Connector可以在server.xml文件中通过protocol属性配置如下:
<Connector port="8080" protocol="org.apache.coyote.http11.Http11AprProtocol"
connectionTimeout="20000"
redirectPort="8443" />
然后看一下Connector的构造器:
//默认connector为HTTP/1.1 NIO
public Connector() {
this("org.apache.coyote.http11.Http11NioProtocol");
}
//根据protocol实现Connector
public Connector(String protocol) {
boolean aprConnector = AprLifecycleListener.isAprAvailable() &&
AprLifecycleListener.getUseAprConnector();
if ("HTTP/1.1".equals(protocol) || protocol == null) {
if (aprConnector) {
protocolHandlerClassName = "org.apache.coyote.http11.Http11AprProtocol";
} else {
protocolHandlerClassName = "org.apache.coyote.http11.Http11NioProtocol";
}
} else if ("AJP/1.3".equals(protocol)) {
if (aprConnector) {
protocolHandlerClassName = "org.apache.coyote.ajp.AjpAprProtocol";
} else {
protocolHandlerClassName = "org.apache.coyote.ajp.AjpNioProtocol";
}
} else {
protocolHandlerClassName = protocol;
}
// 通过反射实例化一个protocolHandle,之后对请求数据的解析都由该protocolHandle完成,例如Http11AprProtocol
ProtocolHandler p = null;
try {
Class> clazz = Class.forName(protocolHandlerClassName);
p = (ProtocolHandler) clazz.getConstructor().newInstance();
} catch (Exception e) {
log.error(sm.getString(
"coyoteConnector.protocolHandlerInstantiationFailed"), e);
} finally {
this.protocolHandler = p;
}
// Default for Connector depends on this system property
setThrowOnFailure(Boolean.getBoolean("org.apache.catalina.startup.EXIT_ON_INIT_FAILURE"));
}
通过分析Connector构造器的源码可以知道,每一个Connector对应了一个protocolHandler,一个protocolHandler被设计用来监听服务器某个端口的网络请求,但并不负责处理请求(处理请求由Container组件完成)。下面就以Http11NioProtocol为例分析Http请求的解析过程。
在Connector的startInterval方法中启动了protocolHandler,代码如下:
protected void startInternal() throws LifecycleException {
// Validate settings before starting
if (getPort() < 0) {
throw new LifecycleException(sm.getString(
"coyoteConnector.invalidPort", Integer.valueOf(getPort())));
}
setState(LifecycleState.STARTING);
try {
protocolHandler.start(); //启动protocolHandler
} catch (Exception e) {
throw new LifecycleException(
sm.getString("coyoteConnector.protocolHandlerStartFailed"), e);
}
}
Http11NioProtocol创建一个org.apache.tomcat.util.net.NioEndpoint实例,然后将监听端口并解析请求的工作全被委托给NioEndpoint实现。tomcat在使用Http11NioProtocol解析HTTP请求时一共设计了三种线程,分别为Acceptor,Poller和Worker。
Acceptor实现了Runnable接口,根据其命名就知道它是一个接收器,负责接收socket,其接收方法是serverSocket.accept()方式,获得SocketChannel对象,然后封装成tomcat自定义的org.apache.tomcat.util.net.NioChannel。虽然是Nio,但在接收socket时仍然使用传统的方法,使用阻塞方式实现。Acceptor以线程池的方式被创建和管理,在NioEndpoint的startInternal()方法中完成Acceptor的启动,源码如下:
public void startInternal() throws Exception {
if (!running) {
running = true;
paused = false;
processorCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
socketProperties.getProcessorCache());
eventCache = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
socketProperties.getEventCache());
nioChannels = new SynchronizedStack<>(SynchronizedStack.DEFAULT_SIZE,
socketProperties.getBufferPool());
// Create worker collection
if (getExecutor() == null) {
createExecutor();
}
//设置最大连接数,默认值为maxConnections = 10000,通过同步器AQS实现。
initializeConnectionLatch();
//创建、配置并启动线程Pooler
pollers = new Poller[getPollerThreadCount()];
for (int i = 0; i < pollers.length; i++) {
pollers[i] = new Poller();
Thread pollerThread = new Thread(pollers[i], getName() + "-ClientPoller-" + i);
pollerThread.setPriority(threadPriority);
pollerThread.setDaemon(true);
pollerThread.start();
}
startAcceptorThreads(); //启动Acceptor线程
}
}
继续追踪startAcceptorThreads的源码
protected final void startAcceptorThreads() {
int count = getAcceptorThreadCount(); //默认值为1
acceptors = new ArrayList<>(count);
for (int i = 0; i < count; i++) {
Acceptor acceptor = new Acceptor<>(this);
String threadName = getName() + "-Acceptor-" + i;
acceptor.setThreadName(threadName);
acceptors.add(acceptor);
Thread t = new Thread(acceptor, threadName);
t.setPriority(getAcceptorThreadPriority());
t.setDaemon(getDaemon());
t.start();
}
}
Acceptor线程的核心代码在它的run方法中
public void run() {
int errorDelay = 0;
// Loop until we receive a shutdown command
while (endpoint.isRunning()) {
// endpoint阻塞
while (endpoint.isPaused() && endpoint.isRunning()) {
state = AcceptorState.PAUSED;
try {
Thread.sleep(50);
} catch (InterruptedException e) {
// Ignore
}
}
if (!endpoint.isRunning()) {
break;
}
state = AcceptorState.RUNNING;
try {
//连接数到达最大值时,await等待释放connection,在Endpoint的startInterval方法中设置了最大连接数
endpoint.countUpOrAwaitConnection();
// Endpoint might have been paused while waiting for latch
// If that is the case, don't accept new connections
if (endpoint.isPaused()) {
continue;
}
//U是一个socketChannel
U socket = null;
try {
//接收socket请求
socket = endpoint.serverSocketAccept();
} catch (Exception ioe) {
// We didn't get a socket
endpoint.countDownConnection();
if (endpoint.isRunning()) {
errorDelay = handleExceptionWithDelay(errorDelay);
throw ioe;
} else {
break;
}
}
// Successful accept, reset the error delay
errorDelay = 0;
// Configure the socket
if (endpoint.isRunning() && !endpoint.isPaused()) {
// endpoint的setSocketOptions方法对socket进行配置
if (!endpoint.setSocketOptions(socket)) {
endpoint.closeSocket(socket);
}
} else {
endpoint.destroySocket(socket);
}
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
String msg = sm.getString("endpoint.accept.fail");
// APR specific.
// Could push this down but not sure it is worth the trouble.
if (t instanceof Error) {
Error e = (Error) t;
if (e.getError() == 233) {
// Not an error on HP-UX so log as a warning
// so it can be filtered out on that platform
// See bug 50273
log.warn(msg, t);
} else {
log.error(msg, t);
}
} else {
log.error(msg, t);
}
}
}
state = AcceptorState.ENDED;
}
Acceptor完成了socket请求的接收,然后交给NioEndpoint 进行配置,继续追踪Endpoint的setSocketOptions方法。
protected boolean setSocketOptions(SocketChannel socket) {
try {
//设置为非阻塞
socket.configureBlocking(false);
Socket sock = socket.socket();
socketProperties.setProperties(sock);
NioChannel channel = nioChannels.pop();
if (channel == null) {
SocketBufferHandler bufhandler = new SocketBufferHandler(
socketProperties.getAppReadBufSize(),
socketProperties.getAppWriteBufSize(),
socketProperties.getDirectBuffer());
if (isSSLEnabled()) {
channel = new SecureNioChannel(socket, bufhandler, selectorPool, this);
} else {
channel = new NioChannel(socket, bufhandler);
}
} else {
channel.setIOChannel(socket);
channel.reset();
}
getPoller0().register(channel); //调用Poller的register方法,完成channel的注册。
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
try {
log.error("", t);
} catch (Throwable tt) {
ExceptionUtils.handleThrowable(tt);
}
// Tell to close the socket
return false;
}
return true;
}
分析setSocketOptions的源码可以知道,该方法的主要功能是利用传入的SocketChannel参数生成SecureNioChannel或者NioChannel,然后注册到Poller线程的selector中,可以进一步了解Java nio的相关知识,对这一块内容有更深的理解。
Pollor同样实现了Runnable接口,是NioEndpoint类的内部类。在Endpoint的startInterval方法中创建、配置并启动了Pollor线程,见代码清单4。Poolor主要职责是不断轮询其selector,检查准备就绪的socket(有数据可读或可写),实现io的多路复用。其构造其中初始化了selector。
public Poller() throws IOException {
this.selector = Selector.open();
}
在分析Acceptor的时候,提到了Acceptor接受到一个socket请求后,调用NioEndpoint的setSocketOptions方法(代码清单6),该方法生成了NioChannel后调用Pollor的register方法生成PoolorEvent后加入到Eventqueue,register方法的源码如下:
public void register(final NioChannel socket) {
socket.setPoller(this);
NioSocketWrapper ka = new NioSocketWrapper(socket, NioEndpoint.this);
socket.setSocketWrapper(ka);
ka.setPoller(this);
ka.setReadTimeout(getConnectionTimeout());
ka.setWriteTimeout(getConnectionTimeout());
ka.setKeepAliveLeft(NioEndpoint.this.getMaxKeepAliveRequests());
ka.setSecure(isSSLEnabled());
PollerEvent r = eventCache.pop();
ka.interestOps(SelectionKey.OP_READ);//this is what OP_REGISTER turns into.
//生成PoolorEvent并加入到Eventqueue
if (r == null) r = new PollerEvent(socket, ka, OP_REGISTER);
else r.reset(socket, ka, OP_REGISTER);
addEvent(r);
}
Pollor的核心代码也在其run方法中
public void run() {
// 调用了destroy()方法后终止此循环
while (true) {
boolean hasEvents = false;
try {
if (!close) {
hasEvents = events();
if (wakeupCounter.getAndSet(-1) > 0) {
//if we are here, means we have other stuff to do
//非阻塞的 select
keyCount = selector.selectNow();
} else {
//阻塞selector,直到有准备就绪的socket
keyCount = selector.select(selectorTimeout);
}
wakeupCounter.set(0);
}
if (close) {
//该方法遍历了eventqueue中的所有PollorEvent,然后依次调用PollorEvent的run,将socket注册到selector中。
events();
timeout(0, false);
try {
selector.close();
} catch (IOException ioe) {
log.error(sm.getString("endpoint.nio.selectorCloseFail"), ioe);
}
break;
}
} catch (Throwable x) {
ExceptionUtils.handleThrowable(x);
log.error("", x);
continue;
}
//either we timed out or we woke up, process events first
if (keyCount == 0) hasEvents = (hasEvents | events());
Iterator iterator =
keyCount > 0 ? selector.selectedKeys().iterator() : null;
// 遍历就绪的socket
while (iterator != null && iterator.hasNext()) {
SelectionKey sk = iterator.next();
NioSocketWrapper attachment = (NioSocketWrapper) sk.attachment();
// Attachment may be null if another thread has called
// cancelledKey()
if (attachment == null) {
iterator.remove();
} else {
//调用processKey方法对有数据读写的socket进行处理,在分析Worker线程时会分析该方法
iterator.remove();
processKey(sk, attachment);
}
}
//process timeouts
timeout(keyCount, hasEvents);
}//while
getStopLatch().countDown();
}
run方法中调用了events方法:
public boolean events() {
boolean result = false;
PollerEvent pe = null;
for (int i = 0, size = events.size(); i < size && (pe = events.poll()) != null; i++) {
result = true;
try {
pe.run(); //将pollerEvent中的每个socketChannel注册到selector中
pe.reset();
if (running && !paused) {
eventCache.push(pe); //将注册了的pollerEvent加到endPoint.eventCache
}
} catch (Throwable x) {
log.error("", x);
}
}
return result;
}
继续跟进PollerEvent的run方法:
public void run() {
if (interestOps == OP_REGISTER) {
try {
//将SocketChannel注册到selector中,注册时间为SelectionKey.OP_READ读事件
socket.getIOChannel().register(
socket.getPoller().getSelector(), SelectionKey.OP_READ, socketWrapper);
} catch (Exception x) {
log.error(sm.getString("endpoint.nio.registerFail"), x);
}
} else {
final SelectionKey key = socket.getIOChannel().keyFor(socket.getPoller().getSelector());
try {
if (key == null) {
socket.socketWrapper.getEndpoint().countDownConnection();
} else {
final NioSocketWrapper socketWrapper = (NioSocketWrapper) key.attachment();
if (socketWrapper != null) {
//we are registering the key to start with, reset the fairness counter.
int ops = key.interestOps() | interestOps;
socketWrapper.interestOps(ops);
key.interestOps(ops);
} else {
socket.getPoller().cancelledKey(key);
}
}
} catch (CancelledKeyException ckx) {
try {
socket.getPoller().cancelledKey(key);
} catch (Exception ignore) {
}
}
}
}
Worker线程即SocketProcessor是用来处理Socket请求的。SocketProcessor也同样是Endpoint的内部类。在Pollor的run方法中(代码清单8)监听到准备就绪的socket时会调用processKey方法进行处理:
protected void processKey(SelectionKey sk, NioSocketWrapper attachment) {
try {
if (close) {
cancelledKey(sk);
} else if (sk.isValid() && attachment != null) {
//有读写事件就绪时
if (sk.isReadable() || sk.isWritable()) {
if (attachment.getSendfileData() != null) {
processSendfile(sk, attachment, false);
} else {
unreg(sk, attachment, sk.readyOps());
boolean closeSocket = false;
// socket可读时,先处理读事件
if (sk.isReadable()) {
//调用processSocket方法进一步处理
if (!processSocket(attachment, SocketEvent.OPEN_READ, true)) {
closeSocket = true;
}
}
//写事件
if (!closeSocket && sk.isWritable()) {
//调用processSocket方法进一步处理
if (!processSocket(attachment, SocketEvent.OPEN_WRITE, true)) {
closeSocket = true;
}
}
if (closeSocket) {
cancelledKey(sk);
}
}
}
} else {
//invalid key
cancelledKey(sk);
}
} catch (CancelledKeyException ckx) {
cancelledKey(sk);
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
log.error("", t);
}
}
继续跟踪processSocket方法:
public boolean processSocket(SocketWrapperBase socketWrapper,
SocketEvent event, boolean dispatch) {
try {
if (socketWrapper == null) {
return false;
}
// 尝试循环利用之前回收的SocketProcessor对象,如果没有可回收利用的则
// 创建新的SocketProcessor对象
SocketProcessorBase sc = processorCache.pop();
if (sc == null) {
创建SocketProcessor,即Worker线程,基于线程池模式进行创建和管理
sc = createSocketProcessor(socketWrapper, event);
} else {
// 循环利用回收的SocketProcessor对象
sc.reset(socketWrapper, event);
}
Executor executor = getExecutor();
if (dispatch && executor != null) {
//SocketProcessor实现了Runneble接口,可以直接传入execute方法进行处理
executor.execute(sc);
} else {
sc.run();
}
} catch (RejectedExecutionException ree) {
getLog().warn(sm.getString("endpoint.executor.fail", socketWrapper) , ree);
return false;
} catch (Throwable t) {
ExceptionUtils.handleThrowable(t);
getLog().error(sm.getString("endpoint.process.fail"), t);
return false;
}
return true;
}
//NioEndpoint中createSocketProcessor创建一个SocketProcessor。
protected SocketProcessorBase createSocketProcessor(
SocketWrapperBase socketWrapper, SocketEvent event) {
return new SocketProcessor(socketWrapper, event);
}
总结:Http11NioProtocol是基于Java Nio实现的,创建了Acceptor、Pollor和Worker线程实现多路io的复用。三类线程之间的关系如下图所示:
Acceptor和Pollor之间是生产者消费者模式的关系,Acceptor不断向EventQueue中添加PollorEvent,Pollor轮询检查EventQueue中就绪的PollorEvent,然后发送给Work线程进行处理。
分析完了Connector,下一篇将继续分析另一个核心组件Connector
tomcat源码分析(第一篇 tomcat源码分析(第一篇 从整体架构开始))
tomcat源码分析(第二篇 tomcat启动过程详解)
tomcat源码分析(第四篇 tomcat请求处理原理解析–Container源码分析)