pytorch DataParallel 多GPU使用

单GPU:

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

多GPU:

device_ids = [0,1,2,3]
model = model.cuda(device_ids[0])
model = nn.DataParallel(model, device_ids=device_ids)
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.001)
optimizer = nn.DataParallel(optimizer, device_ids=device_ids)
optimizer.module.step()
for param_lr in optimizer.module.param_groups:  # 同样是要加module
        #     param_lr['lr'] = param_lr['lr'] * 0.999

加载多GPU预训练模型

model = ft_net()
pretained_model = torch.load('./model/all/8_model.pkl')
pretained_dict = pretained_model.module.state_dict()
model = ft_net()
model.load_state_dict(pretained_dict)

你可能感兴趣的:(pytorch使用)