2018.11.3 《剑指Offer》从零单刷个人笔记整理(66题全)目录传送门
关于AVL树/平衡二叉树的原理和实现可以见之前写过的#数据结构与算法学习笔记#PTA13:平衡二叉搜索树的根 Root of AVL Tree(C/C++)。这道题要求判断是否是一棵AVL树(不要求平衡)。
前几天有用递归实现了二叉树的深度#数据结构与算法学习笔记#剑指Offer36:二叉树的深度(Java),因此可以对每个结点先序遍历进行一次平衡验证,只要确定每个结点都是平衡的,那就可以说明这是一棵平衡二叉树。
不过这样就会对多个结点重复遍历多次。还有一种方法可以对每个结点只遍历一次。
将检查平衡的遍历方式改为后序遍历,可以做到对每个结点只进行一次访问。设定非平衡返回标志值-1,一旦发现不平衡结点立即返回至根节点,可以对算法进行剪枝处理。
输入一棵二叉树,判断该二叉树是否是平衡二叉树。
Java实现:
/**
*
* @author ChopinXBP
* 输入一棵二叉树,判断该二叉树是否是平衡二叉树。
*
*/
public class IsBalancedTree_37 {
public static class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
TreeNode root1 = new TreeNode(2);
TreeNode root2 = new TreeNode(1);
TreeNode root3 = new TreeNode(0);
TreeNode root4 = new TreeNode(3);
TreeNode root5 = new TreeNode(4);
root1.left = root2;
root2.left = root3;
//root3.right = root4;
root1.right = root5;
System.out.println(IsBalanced_Solution2(root1));
}
///////////////对每个结点计算深度的方法,重复遍历了结点///////////////////////
public static boolean IsBalanced_Solution(TreeNode root) {
if(root == null) return true;
if(Math.abs(GetDepth(root.left) - GetDepth(root.right)) > 1) return false;
//return isSearchTree(root);
return true;
}
private static int GetDepth(TreeNode root){
if(root == null)return 0;
return Math.max(GetDepth(root.left), GetDepth(root.right)) + 1;
}
/*
//判断搜索树
private static boolean isSearchTree(TreeNode root){
if(root == null) return true;
boolean rootflag = true;
if(root.left != null && root.val < root.left.val)rootflag = false;
if(root.right != null && root.val > root.right.val)rootflag = false;
return rootflag && isSearchTree(root.left) && isSearchTree(root.right);
}
*/
///////////////对每个结点只遍历一次,并且进行剪枝处理///////////////////////
public static boolean IsBalanced_Solution2(TreeNode root) {
if(getTreeDepth(root) == -1)return false;
return true;
}
private static int getTreeDepth(TreeNode root){
if(root == null)return 0;
int leftdepth = getTreeDepth(root.left);
if(leftdepth == -1)return -1; //剪枝处理,一旦出现不平衡,直接返回-1至初始
int rightdepth = getTreeDepth(root.right);
if(rightdepth == -1)return -1;
if(Math.abs(leftdepth - rightdepth) <= 1){
return Math.max(leftdepth, rightdepth) + 1;
}else{
return -1; //-1代表不平衡
}
}
}
C++实现示例:
//后续遍历二叉树,遍历过程中求子树高度,判断是否平衡
class Solution {
public:
bool IsBalanced(TreeNode *root, int & dep){
if(root == NULL){
return true;
}
int left = 0;
int right = 0;
if(IsBalanced(root->left,left) && IsBalanced(root->right, right)){
int dif = left - right;
if(dif<-1 || dif >1)
return false;
dep = (left > right ? left : right) + 1;
return true;
}
return false;
}
bool IsBalanced_Solution(TreeNode* pRoot) {
int dep = 0;
return IsBalanced(pRoot, dep);
}
};
测试代码:
// ====================测试代码====================
void Test(char* testName, BinaryTreeNode* pRoot, bool expected)
{
if(testName != NULL)
printf("%s begins:\n", testName);
printf("Solution1 begins: ");
if(IsBalanced_Solution1(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
printf("Solution2 begins: ");
if(IsBalanced_Solution2(pRoot) == expected)
printf("Passed.\n");
else
printf("Failed.\n");
}
// 完全二叉树
// 1
// / \
// 2 3
// /\ / \
// 4 5 6 7
void Test1()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, pNode6, pNode7);
Test("Test1", pNode1, true);
DestroyTree(pNode1);
}
// 不是完全二叉树,但是平衡二叉树
// 1
// / \
// 2 3
// /\ \
// 4 5 6
// /
// 7
void Test2()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
BinaryTreeNode* pNode7 = CreateBinaryTreeNode(7);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode3, NULL, pNode6);
ConnectTreeNodes(pNode5, pNode7, NULL);
Test("Test2", pNode1, true);
DestroyTree(pNode1);
}
// 不是平衡二叉树
// 1
// / \
// 2 3
// /\
// 4 5
// /
// 6
void Test3()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
BinaryTreeNode* pNode6 = CreateBinaryTreeNode(6);
ConnectTreeNodes(pNode1, pNode2, pNode3);
ConnectTreeNodes(pNode2, pNode4, pNode5);
ConnectTreeNodes(pNode5, pNode6, NULL);
Test("Test3", pNode1, false);
DestroyTree(pNode1);
}
// 1
// /
// 2
// /
// 3
// /
// 4
// /
// 5
void Test4()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, pNode2, NULL);
ConnectTreeNodes(pNode2, pNode3, NULL);
ConnectTreeNodes(pNode3, pNode4, NULL);
ConnectTreeNodes(pNode4, pNode5, NULL);
Test("Test4", pNode1, false);
DestroyTree(pNode1);
}
// 1
// \
// 2
// \
// 3
// \
// 4
// \
// 5
void Test5()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
BinaryTreeNode* pNode2 = CreateBinaryTreeNode(2);
BinaryTreeNode* pNode3 = CreateBinaryTreeNode(3);
BinaryTreeNode* pNode4 = CreateBinaryTreeNode(4);
BinaryTreeNode* pNode5 = CreateBinaryTreeNode(5);
ConnectTreeNodes(pNode1, NULL, pNode2);
ConnectTreeNodes(pNode2, NULL, pNode3);
ConnectTreeNodes(pNode3, NULL, pNode4);
ConnectTreeNodes(pNode4, NULL, pNode5);
Test("Test5", pNode1, false);
DestroyTree(pNode1);
}
// 树中只有1个结点
void Test6()
{
BinaryTreeNode* pNode1 = CreateBinaryTreeNode(1);
Test("Test6", pNode1, true);
DestroyTree(pNode1);
}
// 树中没有结点
void Test7()
{
Test("Test7", NULL, true);
}
int _tmain(int argc, _TCHAR* argv[])
{
Test1();
Test2();
Test3();
Test4();
Test5();
Test6();
Test7();
return 0;
}
#Coding一小时,Copying一秒钟。留个言点个赞呗,谢谢你#