在分析receiver启动的博文中SparkStreaming中Receiver的启动,我们遇到ReceiverSupervisor中的onStart方法
def start() {
onStart()
startReceiver()
}
我们先来回顾一下这个方法是如何被触发的:
StreamingContext#start
JobScheduler#start
ReceiverTracker#start
launchReceivers()
endpoint.send(StartAllReceivers(receivers)) //这里的endpoint是指ReceiverTrackerEndpoint
JobGenerator#start
ReceiverTracker接收到StartAllReceivers消息后,执行startReceiver方法
startReceiver(receiver, executors)
在这个方法中会将receiver与每一个executor封装成一个RDD,并为这个RDD提供一个startReceiverFunc方法,然后组装成一个job提交到executor上去执行,在这个startReceiverFunc方法中就调用了supervisor.start()
方法
至此我们就明白了这个start方法的调用是在receiver启动的时候就会调用的,当时我们略过了onStart方法,直接分析了startReceiver方法,下面我们看看ReceiverSupervisorImpl#onStart方法
override protected def onStart() {
//这里会启动BlockGenerator
registeredBlockGenerators.foreach { _.start() }
}
registeredBlockGenerators其实就是BlockGenerator的数组
private val registeredBlockGenerators = new mutable.ArrayBuffer[BlockGenerator]
在初始化ReceiverSupervisorImpl的时候,就会创建一个BlockGenerator将其加入这个队列中,那么我们看看BlockGenerator类
private[streaming] class BlockGenerator(
listener: BlockGeneratorListener,
receiverId: Int,
conf: SparkConf,
clock: Clock = new SystemClock()
) extends RateLimiter(conf) with Logging {
//blockInterval的默认值是200ms
private val blockIntervalMs = conf.getTimeAsMs("spark.streaming.blockInterval", "200ms")
require(blockIntervalMs > 0, s"'spark.streaming.blockInterval' should be a positive value")
//相当于每隔200ms就调用一个updateCurrentBuffer函数
private val blockIntervalTimer =
new RecurringTimer(clock, blockIntervalMs, updateCurrentBuffer, "BlockGenerator")
private val blockQueueSize = conf.getInt("spark.streaming.blockQueueSize", 10)
//这里blocksForPushing的长度都是可以调节的
//默认的blockQueueSize是10个,可以调大也可以调小
private val blocksForPushing = new ArrayBlockingQueue[Block](blockQueueSize)
//后台线程,启动之后就会调用keepPushingBlocks方法,这个方法中就会每隔一段时间去blockForPushing队列中取block
private val blockPushingThread = new Thread() { override def run() { keepPushingBlocks() } }
//currentBuffer就是用来存放原始的数据
@volatile private var currentBuffer = new ArrayBuffer[Any]
@volatile private var state = Initialized
def start(): Unit = synchronized {
if (state == Initialized) {
state = Active
//BlockGenerator的start方法其实就是启动内部的两个关键的后台线程
//一个是blockIntervalTimer,负责将currentBuffer中的原始数据打包成一个一个的block
// 另一个是blockPushingThread,负责将blocksForPushing中的block调用pushArrayBuffer
blockIntervalTimer.start()
blockPushingThread.start()
logInfo("Started BlockGenerator")
} else {
throw new SparkException(
s"Cannot start BlockGenerator as its not in the Initialized state [state = $state]")
}
}
private def updateCurrentBuffer(time: Long): Unit = {
try {
var newBlock: Block = null
synchronized {
//直接清空currentBuffer,创建一个新的currentBuffer
if (currentBuffer.nonEmpty) {
val newBlockBuffer = currentBuffer
currentBuffer = new ArrayBuffer[Any]
//创建一个唯一的blockId,根据时间创建的
val blockId = StreamBlockId(receiverId, time - blockIntervalMs)
listener.onGenerateBlock(blockId)
//创建一个block
newBlock = new Block(blockId, newBlockBuffer)
}
}
if (newBlock != null) {
//将block放入blocksForPushing队列中
blocksForPushing.put(newBlock) // put is blocking when queue is full
}
} catch {
case ie: InterruptedException =>
logInfo("Block updating timer thread was interrupted")
case e: Exception =>
reportError("Error in block updating thread", e)
}
}
/** Keep pushing blocks to the BlockManager. */
private def keepPushingBlocks() {
logInfo("Started block pushing thread")
def areBlocksBeingGenerated: Boolean = synchronized {
state != StoppedGeneratingBlocks
}
try {
// While blocks are being generated, keep polling for to-be-pushed blocks and push them.
while (areBlocksBeingGenerated) {
//从blocksForPushing这个队列中poll出来了当前队列队首的block,对于阻塞队列默认设置了100ms的超时
Option(blocksForPushing.poll(10, TimeUnit.MILLISECONDS)) match {
//拿到了block,调用pushBlock去推送block
case Some(block) => pushBlock(block)
case None =>
}
}
// At this point, state is StoppedGeneratingBlock. So drain the queue of to-be-pushed blocks.
logInfo("Pushing out the last " + blocksForPushing.size() + " blocks")
while (!blocksForPushing.isEmpty) {
val block = blocksForPushing.take()
logDebug(s"Pushing block $block")
pushBlock(block)
logInfo("Blocks left to push " + blocksForPushing.size())
}
logInfo("Stopped block pushing thread")
} catch {
case ie: InterruptedException =>
logInfo("Block pushing thread was interrupted")
case e: Exception =>
reportError("Error in block pushing thread", e)
}
}
private def pushBlock(block: Block) {
listener.onPushBlock(block.id, block.buffer)
logInfo("Pushed block " + block.id)
}
}
我们先看一下它的start方法,在start方法里面主要就是启动了两个组件,一个是blockIntervalTimer,另一个是blockPushingThread
blockIntervalTimer是一个定时器,其主要的作用就是定时将currentBuffer中的原始数据打包成一个个的block,从其定义中就可以看出来调用的是updateCurrentBuffer这个方法,在这个方法中我们看到会先清除掉currentBuffer,创建一个新的currentBuffer,并使用其创建一个block,然后将这个block放到blocksForPushing中,这就说明了一个block中含有的是200ms内发送过来的所有的数据
blockPushingThread是一个线程,调用其start方法负责启动该线程,该线程的run方法中调用了keepPushingBlocks方法,在这个方法中每隔一段时间去blockForPushing队列中取block,取到block后调用pushBlock(block)方法,最后回调SupervisorReceiverImpl中的onPushBlock方法
private val defaultBlockGeneratorListener = new BlockGeneratorListener {
def onAddData(data: Any, metadata: Any): Unit = { }
def onGenerateBlock(blockId: StreamBlockId): Unit = { }
def onError(message: String, throwable: Throwable) {
reportError(message, throwable)
}
def onPushBlock(blockId: StreamBlockId, arrayBuffer: ArrayBuffer[_]) {
//调用pushArrayBuffer去推送block
pushArrayBuffer(arrayBuffer, None, Some(blockId))
}
}
pushArrayBuffer最终就会调用pushAndReportBlock方法将block写入BlockManager中,这边的源码详见上一篇博文
接下来我们看一下job是怎么提交的,我们注意到在初始化JobScheduler中也初始化了另一个对象JobGenerator,在JobGenerator中有一个定时器,定时执行
private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds,
longTime => eventLoop.post(GenerateJobs(new Time(longTime))), "JobGenerator")
每隔一段时间就会post一个GeneratorJobs消息,我们看看接收到GeneratorJobs消息后的处理:
case GenerateJobs(time) => generateJobs(time)
会调用generateJobs方法
//定时调度jeneratorJobs方法
//传入一个Timer时间,其实就是一个batchinterval内的时间段
private def generateJobs(time: Time) {
SparkEnv.set(ssc.env)
Try {
//首先找到receiverTracker,调用其allocateBlocksToBatch方法
//将当前的时间段内的block分配给一个batch并为其创建一个RDD
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
//调用DStreamGraph的generatorJobs方法,来根据我们定义的DStream之间的依赖关系和算子生成job
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
//从
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
//用JobScheduler提交Job,其对应的原始数据是那一批block
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}