我!李英俊!觉得这篇文章超级有用!值得你一看!
功能: 机器学习工具集合,直接导入一个类,传参训练集,验证集就能生成报告
使用方式:
save_path='./models/'
。里面包括了每个模型的输出报告(测试集,验证集都有),每个模型(10个模型加最后的集成模型,对所有数据进行了重新学习),使用joblib保存的,使用的话直接joblib.load就行。还有一个优化报告,即对四种集成学习模型进行优化后的结果。tips: 下面会附上代码和两个使用demo,也会贴上github上的链接,如果大家需要什么新的功能可以留言告诉我,最新的更新应该会在github上同步,希望大家星星我,有空的话再更新博客。求个赞不过分吧!转载请一定表明出处哟~
点我打开github地址,求关注
结果展示:
输出example
输出报告example
优化报告example
代码具体实现:
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8
"""
@author: Li Tian
@contact: [email protected]
@software: pycharm
@file: ML_combines.py
@time: 2019/9/23 8:53
@desc: 机器学习工具集合,直接写一个类,传参训练集,验证集就能生成报告
"""
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
from collections import OrderedDict
class MLTools:
"""
包含:多项式朴素贝叶斯, 高斯朴素贝叶斯, K最近邻, 逻辑回归, 支持向量机, 决策树, 随机森林, Adaboost, GBDT, xgboost
"""
random_state = 42
# 粗略 随机森林调参数值
# 参考链接1:https://blog.csdn.net/geduo_feng/article/details/79558572
# 参考链接2:https://blog.csdn.net/qq_35040963/article/details/88832030
parameter_tree = {
# 集成模型数量越小越简单
'n_estimators': range(10, 200, 20),
# 最大树深度越小越简单
'max_depth': range(1, 10, 1),
# 最小样本分割数越大越简单
'min_samples_split': list(range(2, 10, 1))[::-1],
}
parameter_tree = OrderedDict(parameter_tree)
def __init__(self, X_train, y_train, X_test, y_test):
self.X_train = X_train
self.y_train = y_train
self.X_test = X_test
self.y_test = y_test
# Multinomial Naive Bayes Classifier / 多项式朴素贝叶斯
def multinomial_naive_bayes_classifier(self):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(self.X_train, self.y_train)
return model, None
# Gaussian Naive Bayes Classifier / 高斯朴素贝叶斯
def gaussian_naive_bayes_classifier(self):
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(self.X_train, self.y_train)
return model, None
# KNN Classifier / K最近邻
def knn_classifier(self):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(self.X_train, self.y_train)
return model, None
# Logistic Regression Classifier / 逻辑回归
def logistic_regression_classifier(self):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(self.X_train, self.y_train)
return model, None
# SVM Classifier / 支持向量机
def svm_classifier(self):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(self.X_train, self.y_train)
return model, None
# Decision Tree Classifier / 决策树
def decision_tree_classifier(self):
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(self.X_train, self.y_train)
return model, None
# Random Forest Classifier / 随机森林
def random_forest_classifier(self, is_adjust=True):
from sklearn.ensemble import RandomForestClassifier
# 训练普通模型
model = RandomForestClassifier()
model.fit(self.X_train, self.y_train)
test_pred = model.predict(self.X_test)
min_score = f1_score(self.y_test, test_pred, average='macro')
if not is_adjust:
return model, None
max_score = 0
best_param = [None, None, None]
for p1 in MLTools.parameter_tree['n_estimators']:
for p2 in MLTools.parameter_tree['max_depth']:
for p3 in MLTools.parameter_tree['min_samples_split']:
test_model = RandomForestClassifier(random_state=MLTools.random_state, n_estimators=p1,
max_depth=p2, min_samples_split=p3, n_jobs=-1)
test_model.fit(self.X_train, self.y_train)
test_pred = test_model.predict(self.X_test)
new_score = f1_score(self.y_test, test_pred, average='macro')
# 输出检查每一个细节,可能存在不同的参数得到相同的精度值
# print('n_estimators=' + str(p1) + 'max_depth=' + str(p2) + 'min_samples_split=' + str(p3) + '-->' + str(new_score))
if new_score > max_score:
max_score = new_score
best_param = [p1, p2, p3]
best_model = RandomForestClassifier(random_state=MLTools.random_state, n_estimators=best_param[0],
max_depth=best_param[1], min_samples_split=best_param[2], n_jobs=-1)
best_model.fit(self.X_train, self.y_train)
word = '-- optimized parameters: \n'
count = 0
for name in MLTools.parameter_tree.keys():
word = word + name + ' = ' + str(best_param[count]) + '\n'
count += 1
word = word + 'f1_macro: ' + '%.4f' % min_score + '-->' + '%.4f' % max_score + "\n"
return best_model, word
# AdaBoost Classifier / 自适应提升法
def adaboost_classifier(self, is_adjust=True):
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
model = AdaBoostClassifier()
model.fit(self.X_train, self.y_train)
test_pred = model.predict(self.X_test)
min_score = f1_score(self.y_test, test_pred, average='macro')
if not is_adjust:
return model, None
max_score = 0
best_param = [None, None, None]
for p1 in MLTools.parameter_tree['n_estimators']:
for p2 in MLTools.parameter_tree['max_depth']:
for p3 in MLTools.parameter_tree['min_samples_split']:
test_model = AdaBoostClassifier(
DecisionTreeClassifier(random_state=MLTools.random_state,
max_depth=p2, min_samples_split=p3),
random_state=MLTools.random_state, n_estimators=p1)
test_model.fit(self.X_train, self.y_train)
test_pred = test_model.predict(self.X_test)
new_score = f1_score(self.y_test, test_pred, average='macro')
if new_score > max_score:
max_score = new_score
best_param = [p1, p2, p3]
best_model = AdaBoostClassifier(
DecisionTreeClassifier(random_state=MLTools.random_state,
max_depth=best_param[1], min_samples_split=best_param[2]),
random_state=MLTools.random_state, n_estimators=best_param[0])
best_model.fit(self.X_train, self.y_train)
word = '-- optimized parameters: \n'
count = 0
for name in MLTools.parameter_tree.keys():
word = word + name + ' = ' + str(best_param[count]) + '\n'
count += 1
word = word + 'f1_macro: ' + '%.4f' % min_score + '-->' + '%.4f' % max_score + "\n"
return best_model, word
# GBDT(Gradient Boosting Decision Tree) Classifier / 梯度提升决策树
def gradient_boosting_classifier(self, is_adjust=True):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier()
model.fit(self.X_train, self.y_train)
test_pred = model.predict(self.X_test)
min_score = f1_score(self.y_test, test_pred, average='macro')
if not is_adjust:
return model, None
max_score = 0
best_param = [None, None, None]
for p1 in MLTools.parameter_tree['n_estimators']:
for p2 in MLTools.parameter_tree['max_depth']:
for p3 in MLTools.parameter_tree['min_samples_split']:
test_model = GradientBoostingClassifier(random_state=MLTools.random_state, n_estimators=p1,
max_depth=p2, min_samples_split=p3)
test_model.fit(self.X_train, self.y_train)
test_pred = test_model.predict(self.X_test)
new_score = f1_score(self.y_test, test_pred, average='macro')
if new_score > max_score:
max_score = new_score
best_param = [p1, p2, p3]
best_model = GradientBoostingClassifier(random_state=MLTools.random_state, n_estimators=best_param[0],
max_depth=best_param[1], min_samples_split=best_param[2])
best_model.fit(self.X_train, self.y_train)
word = '-- optimized parameters: \n'
count = 0
for name in MLTools.parameter_tree.keys():
word = word + name + ' = ' + str(best_param[count]) + '\n'
count += 1
word = word + 'f1_macro: ' + '%.4f' % min_score + '-->' + '%.4f' % max_score + "\n"
return best_model, word
# xgboost / 极端梯度提升
def xgboost_classifier(self, is_adjust=True):
from xgboost import XGBClassifier
model = XGBClassifier()
model.fit(self.X_train, self.y_train)
test_pred = model.predict(self.X_test)
min_score = f1_score(self.y_test, test_pred, average='macro')
if not is_adjust:
return model, None
max_score = 0
best_param = [0, 0, 0]
for p1 in MLTools.parameter_tree['n_estimators']:
for p2 in MLTools.parameter_tree['max_depth']:
for p3 in MLTools.parameter_tree['min_samples_split']:
test_model = XGBClassifier(random_state=MLTools.random_state, n_estimators=p1,
max_depth=p2, min_samples_split=p3, n_jobs=-1)
test_model.fit(self.X_train, self.y_train)
test_pred = test_model.predict(self.X_test)
new_score = f1_score(self.y_test, test_pred, average='macro')
if new_score > max_score:
max_score = new_score
best_param = [p1, p2, p3]
best_model = XGBClassifier(random_state=MLTools.random_state, n_estimators=best_param[0],
max_depth=best_param[1], min_samples_split=best_param[2], n_jobs=-1)
best_model.fit(self.X_train, self.y_train)
word = '-- optimized parameters: \n'
count = 0
for name in MLTools.parameter_tree.keys():
word = word + name + ' = ' + str(best_param[count]) + '\n'
count += 1
word = word + 'f1_macro: ' + '%.4f' % min_score + '-->' + '%.4f' % max_score + "\n"
return best_model, word
def model_building(X_train, y_train, X_test, y_test, save_path, target_names=None, just_emsemble=False):
"""
训练模型,并得到结果,并重新训练所有数据,保存模型
:param save_path: 模型的保存路径
:param target_names: 样本标签名
:param just_emsemble: 已经有了其他模型,只对模型进行集成
"""
from sklearn.metrics import classification_report
import joblib
import os
import numpy as np
if not just_emsemble:
tool = MLTools(X_train, y_train, X_test, y_test)
models = [tool.multinomial_naive_bayes_classifier(),
tool.gaussian_naive_bayes_classifier(),
tool.knn_classifier(),
tool.logistic_regression_classifier(),
tool.svm_classifier(),
tool.decision_tree_classifier(),
tool.random_forest_classifier(),
tool.adaboost_classifier(),
tool.gradient_boosting_classifier(),
tool.xgboost_classifier()]
model_names = ['多项式朴素贝叶斯', '高斯朴素贝叶斯', 'K最近邻', '逻辑回归', '支持向量机', '决策树', '随机森林', 'Adaboost', 'GBDT', 'xgboost']
# 遍历每个模型
f = open(save_path + 'report.txt', 'w+')
g = open(save_path + 'optimized.txt', 'w+')
for count in range(len(models)):
model, optimized = models[count]
model_name = model_names[count]
print(str(count + 1) + '. 正在运行:', model_name, '...')
train_pred = model.predict(X_train)
test_pred = model.predict(X_test)
train = classification_report(y_train, train_pred, target_names=target_names)
test = classification_report(y_test, test_pred, target_names=target_names)
f.write('- ' + model_name + '\n')
f.write('-- 【训练集】' + '\n')
f.writelines(train)
f.write('\n')
f.write('-- 【测试集】' + '\n')
f.writelines(test)
f.write('\n')
g.write('- ' + model_name + '\n')
if optimized:
g.write(optimized)
g.write('\n')
model.fit(np.r_[np.array(X_train), np.array(X_test)], np.r_[np.array(y_train), np.array(y_test)])
joblib.dump(model, os.path.join(save_path, model_name + '.plk'))
f.close()
g.close()
# 开始集成模型
from sklearn.ensemble import VotingClassifier
f = open(save_path + 'report.txt', 'a+')
emsemble_names = ['随机森林', 'Adaboost', 'GBDT', 'xgboost']
emsemble_path = [os.path.join(save_path, i + '.plk') for i in emsemble_names]
estimators = []
for x, y in zip(emsemble_names, emsemble_path):
estimators.append((x, joblib.load(y)))
voting_clf = VotingClassifier(estimators, voting='soft', n_jobs=-1)
voting_clf.fit(X_train, y_train)
print('11. 正在运行:集成模型...')
train_pred = voting_clf.predict(X_train)
test_pred = voting_clf.predict(X_test)
train = classification_report(y_train, train_pred, target_names=target_names)
test = classification_report(y_test, test_pred, target_names=target_names)
f.write('- ' + '集成模型' + '\n')
f.write('-- 【训练集】' + '\n')
f.writelines(train)
f.write('\n')
f.write('-- 【测试集】' + '\n')
f.writelines(test)
f.write('\n')
voting_clf.fit(np.r_[np.array(X_train), np.array(X_test)], np.r_[np.array(y_train), np.array(y_test)])
joblib.dump(voting_clf, os.path.join(save_path, '集成模型' + '.plk'))
f.close()
def example1():
"""鸢尾花数据集进行测试"""
from sklearn.datasets import load_iris
iris = load_iris()
iris_data = iris['data']
iris_target = iris['target']
iris_names = iris['target_names']
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_target, test_size=0.2, random_state=42)
model_building(X_train, y_train, X_test, y_test, save_path='./models/', target_names=iris_names)
def example2():
"""手写数据集进行测试"""
from sklearn.datasets import load_digits
import numpy as np
digits = load_digits()
digits_data = digits['images']
digits_target = digits['target']
digits_names = digits['target_names']
shape = digits_data.shape
X = np.array(digits_data).reshape(shape[0], shape[1] * shape[2])
a, b = 4, 9
index1 = digits_target == a
index2 = digits_target == b
X = np.r_[X[index1], X[index2]]
y = np.r_[digits_target[index1], digits_target[index2]]
names = [str(a), str(b)]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model_building(X_train, y_train, X_test, y_test, save_path='./models2/', target_names=names)
if __name__ == '__main__':
example1()
我的CSDN:https://blog.csdn.net/qq_21579045
我的博客园:https://www.cnblogs.com/lyjun/
我的Github:https://github.com/TinyHandsome
纸上得来终觉浅,绝知此事要躬行~
欢迎大家过来OB~
by 李英俊小朋友