flink遇到的坑

flink运行一切顺利,在发送数据量快达到1G的时候,突然发生故障,无故重启,最终导致整个flink程序崩溃。

发现问题后,就开始测试,追踪到日志,如下:

AsynchronousException{java.lang.Exception: Could not materialize checkpoint 1143 for operator logData -> Sink: host (1/1).}
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:971)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.Exception: Could not materialize checkpoint 1143 for operator logData -> Sink: host (1/1).
    ... 6 more
Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=5244975 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
    at java.util.concurrent.FutureTask.report(FutureTask.java:122)
    at java.util.concurrent.FutureTask.get(FutureTask.java:192)
    at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:43)
    at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:898)
    ... 5 more
    Suppressed: java.lang.Exception: Could not properly cancel managed keyed state future.
        at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:90)
        at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.cleanup(StreamTask.java:1024)
        at org.apache.flink.streaming.runtime.tasks.StreamTask$AsyncCheckpointRunnable.run(StreamTask.java:962)
        ... 5 more
    Caused by: java.util.concurrent.ExecutionException: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=5244975 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
        at java.util.concurrent.FutureTask.report(FutureTask.java:122)
        at java.util.concurrent.FutureTask.get(FutureTask.java:192)
        at org.apache.flink.util.FutureUtil.runIfNotDoneAndGet(FutureUtil.java:43)
        at org.apache.flink.runtime.state.StateUtil.discardStateFuture(StateUtil.java:85)
        at org.apache.flink.streaming.api.operators.OperatorSnapshotResult.cancel(OperatorSnapshotResult.java:88)
        ... 7 more
    Caused by: java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=5244975 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.
        at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory.checkSize(MemCheckpointStreamFactory.java:64)
        at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetBytes(MemCheckpointStreamFactory.java:144)
        at org.apache.flink.runtime.state.memory.MemCheckpointStreamFactory$MemoryCheckpointOutputStream.closeAndGetHandle(MemCheckpointStreamFactory.java:125)
        at org.apache.flink.runtime.checkpoint.AbstractAsyncSnapshotIOCallable.closeStreamAndGetStateHandle(AbstractAsyncSnapshotIOCallable.java:100)
        at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$1.performOperation(HeapKeyedStateBackend.java:351)
        at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend$1.performOperation(HeapKeyedStateBackend.java:329)
        at org.apache.flink.runtime.io.async.AbstractAsyncIOCallable.call(AbstractAsyncIOCallable.java:72)
        at java.util.concurrent.FutureTask.run(FutureTask.java:266)
        at org.apache.flink.runtime.state.heap.HeapKeyedStateBackend.snapshot(HeapKeyedStateBackend.java:372)
        at org.apache.flink.streaming.api.operators.AbstractStreamOperator.snapshotState(AbstractStreamOperator.java:397)
        at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.checkpointStreamOperator(StreamTask.java:1163)
        at org.apache.flink.streaming.runtime.tasks.StreamTask$CheckpointingOperation.executeCheckpointing(StreamTask.java:1095)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.checkpointState(StreamTask.java:654)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.performCheckpoint(StreamTask.java:590)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.triggerCheckpointOnBarrier(StreamTask.java:543)
        at org.apache.flink.streaming.runtime.io.BarrierBuffer.notifyCheckpoint(BarrierBuffer.java:378)
        at org.apache.flink.streaming.runtime.io.BarrierBuffer.processBarrier(BarrierBuffer.java:228)
        at org.apache.flink.streaming.runtime.io.BarrierBuffer.getNextNonBlocked(BarrierBuffer.java:183)
        at org.apache.flink.streaming.runtime.io.StreamInputProcessor.processInput(StreamInputProcessor.java:213)
        at org.apache.flink.streaming.runtime.tasks.OneInputStreamTask.run(OneInputStreamTask.java:69)
        at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:263)
        at org.apache.flink.runtime.taskmanager.Task.run(Task.java:702)
        ... 1 more
    [CIRCULAR REFERENCE:java.io.IOException: Size of the state is larger than the maximum permitted memory-backed state. Size=5244975 , maxSize=5242880 . Consider using a different state backend, like the File System State backend.]

参考文章:使用Flink时遇到的问题

解决参考办法:修改flink-conf.yaml

#==============================================================================
# Streaming state checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends: jobmanager, filesystem, rocksdb, 
#
 state.backend: filesystem # 设置检查点保存格式,默认保存在内存中


# Directory for storing checkpoints in a Flink-supported filesystem
# Note: State backend must be accessible from the JobManager and all TaskManagers.
# Use "hdfs://" for HDFS setups, "file://" for UNIX/POSIX-compliant file systems,
# (or any local file system under Windows), or "S3://" for S3 file system.
#
# state.backend.fs.checkpointdir: hdfs://namenode-host:port/flink-checkpoints
state.backend.fs.checkpointdir: file:///flink-checkpoints/point.txt

你可能感兴趣的:(bigData)