opencv 图片特效

opencv 图片特效

更多干货

  • 分布式实战(干货)

  • spring cloud 实战(干货)

  • mybatis 实战(干货)

  • spring boot 实战(干货)

  • React 入门实战(干货)

  • 构建中小型互联网企业架构(干货)

  • python 学习持续更新

  • ElasticSearch 笔记

  • kafka storm 实战 (干货)

  • scala 学习持续更新

  • RPC

  • 深度学习

图片颜色反转

灰度图片颜色反转

#0-255 255-当前
import cv2
import numpy as np
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dst = np.zeros((height,width,1),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        grayPixel = gray[i,j]
        dst[i,j] = 255-grayPixel
cv2.imshow('dst',dst)
cv2.waitKey(0)

彩色图片颜色反转

#RGB 255-R=newR
#0-255 255-当前
import cv2
import numpy as np
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
    for j in range(0,width):
        (b,g,r) = img[i,j]
        dst[i,j] = (255-b,255-g,255-r)
cv2.imshow('dst',dst)
cv2.waitKey(0)

马赛克

import cv2
import numpy as np
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
for m in range(100,300):
    for n in range(100,200):
        # pixel ->10*10
        if m%10 == 0 and n%10==0:
            for i in range(0,10):
                for j in range(0,10):
                    (b,g,r) = img[m,n]
                    img[i+m,j+n] = (b,g,r)
cv2.imshow('dst',img)
cv2.waitKey(0)

毛玻璃

import cv2
import numpy as np
import random
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst = np.zeros((height,width,3),np.uint8)
mm = 8
for m in range(0,height-mm):
    for n in range(0,width-mm):
        index = int(random.random()*8)#0-8
        (b,g,r) = img[m+index,n+index]
        dst[m,n] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)

图片融合

dst = src1*a+src2*(1-a)

# dst  = src1*a+src2*(1-a)
import cv2
import numpy as np
img0 = cv2.imread('image0.jpg',1)
img1 = cv2.imread('image1.jpg',1)
imgInfo = img0.shape
height = imgInfo[0]
width = imgInfo[1]
# ROI
roiH = int(height/2)
roiW = int(width/2)
img0ROI = img0[0:roiH,0:roiW]
img1ROI = img1[0:roiH,0:roiW]
# dst
dst = np.zeros((roiH,roiW,3),np.uint8)
dst = cv2.addWeighted(img0ROI,0.5,img1ROI,0.5,0)#add src1*a+src2*(1-a)
# 1 src1 2 a 3 src2 4 1-a
cv2.imshow('dst',dst)
cv2.waitKey(0)

边缘检测

import cv2
import numpy as np
import random
img = cv2.imread('3.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow('src',img)
#canny 1 gray 2 高斯 3 canny
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgG = cv2.GaussianBlur(gray,(3,3),0)
dst = cv2.Canny(img,50,50) #图片卷积——》th
cv2.imshow('dst',dst)
cv2.waitKey(0)

你可能感兴趣的:(【python】)