彻底读懂Mysql执行计划

在现如今的软件开发中,关系型数据库是做数据存储最重要的工具。无论是Oracale还是Mysql,都是需要通过SQL语句来和数据库进行交互的,这种交互我们通常称之为CRUD。在CRUD操作中,最最常用的也就是Read操作了。而对于不同的表结构,采用不同的SQL语句,性能上可能千差万别。本文,就基于MySql数据库,来介绍一下如何定位SQL语句的性能问题。

 

对于低性能的SQL语句的定位,最重要也是最有效的方法就是使用执行计划。

 

执行计划

 

我们知道,不管是哪种数据库,或者是哪种数据库引擎,在对一条SQL语句进行执行的过程中都会做很多相关的优化,对于查询语句,最重要的优化方式就是使用索引。

 

而执行计划,就是显示数据库引擎对于SQL语句的执行的详细情况,其中包含了是否使用索引,使用什么索引,使用的索引的相关信息等。

 

 

基本语法

explain select ...

mysql的explain 命令可以用来分析select 语句的运行效果。

除此之外,explain 的extended 扩展能够在原本explain的基础上额外的提供一些查询优化的信息,这些信息可以通过mysql的show warnings命令得到。

mysql> explain extended select * from account;
******** 1. row ***************************
          id: 1
select_type: SIMPLE
       table: account
        type: ALL
possible_keys: NULL
         key: NULL
     key_len: NULL
         ref: NULL
        rows: 1
    filtered: 100.00
       Extra:
1 row in set, 1 warning (0.00 sec)

mysql> show warnings;
*************1. row ***************************
Level: Note
  Code: 1003
Message: select `dbunit`.`account`.`id` AS `id`,`dbunit`.`account`.`name` AS `name` from `dbunit`.`account`
1 row in set (0.00 sec)

另外,对于分区表的查询,需要使用partitions命令。

explain partitions select ...

执行计划包含的信息

不同版本的Mysql和不同的存储引擎执行计划不完全相同,但基本信息都差不多。mysql执行计划主要包含以下信息:

 

id

由一组数字组成。表示一个查询中各个子查询的执行顺序;

  • id相同执行顺序由上至下。

 

  • id不同,id值越大优先级越高,越先被执行。

  • id为null时表示一个结果集,不需要使用它查询,常出现在包含union等查询语句中。

select_type

每个子查询的查询类型,一些常见的查询类型。

 

id select_type description              
1 SIMPLE 不包含任何子查询或union等查询
2 PRIMARY 包含子查询最外层查询就显示为 PRIMARY
3 SUBQUERY select或 where字句中包含的查询
4 DERIVED from字句中包含的查询
5 UNION 出现在union后的查询语句中
6 UNION RESULT 从UNION中获取结果集,例如上文第三个例子

 

table

查询涉及到的数据表。

 

如果查询使用了别名,那么这里显示的是别名,如果不涉及对数据表的操作,那么这显示为null,如果显示为尖括号括起来的就表示这个是临时表,后边的N就是执行计划中的id,表示结果来自于这个查询产生。如果是尖括号括起来的,与类似,也是一个临时表,表示这个结果来自于union查询的id为M,N的结果集。

 

type

访问类型

  • ALL   扫描全表数据

  • index 遍历索引

  • range 索引范围查找

  • index_subquery 在子查询中使用 ref

  • unique_subquery 在子查询中使用 eq_ref

  • ref_or_null 对Null进行索引的优化的 ref

  • fulltext 使用全文索引

  • ref   使用非唯一索引查找数据

  • eq_ref 在join查询中使用PRIMARY KEYorUNIQUE NOT NULL索引关联。

  • const 使用主键或者唯一索引,且匹配的结果只有一条记录。

  • system const 连接类型的特例,查询的表为系统表。

     

性能从好到差依次为:system,const,eq_ref,ref,fulltext,ref_or_null,unique_subquery,index_subquery,range,index_merge,index,ALL,除了ALL之外,其他的type都可以使用到索引,除了index_merge之外,其他的type只可以用到一个索引。

所以,如果通过执行计划发现某张表的查询语句的type显示为ALL,那就要考虑添加索引,或者更换查询方式,使用索引进行查询。

possible_keys

可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL时就要考虑当前的SQL是否需要优化了。

key

显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。

TIPS:查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中。

select_type为index_merge时,这里可能出现两个以上的索引,其他的select_type这里只会出现一个。

key_length

索引长度 char()、varchar()索引长度的计算公式:

(Character Set:utf8mb4=4,utf8=3,gbk=2,latin1=1) * 列长度 + 1(允许null) + 2(变长列)

其他类型索引长度的计算公式: ex:

CREATE TABLE `student` (
 `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
 `name` varchar(128) NOT NULL DEFAULT '',
 `age` int(11),
 PRIMARY KEY (`id`),
 UNIQUE KEY `idx` (`name`),
 KEY `idx_age` (`age`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4;

name 索引长度为: 编码为utf8mb4,列长为128,不允许为NULL,字段类型为varchar(128)key_length = 128 * 4 + 0 + 2 = 514;

 

age 索引长度:int类型占4位,允许null,索引长度为5。

 

ref

表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值

如果是使用的常数等值查询,这里会显示const,如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段,如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func

rows

返回估算的结果集数目,注意这并不是一个准确值。

extra

extra的信息非常丰富,常见的有: 

  1. Using index 使用覆盖索引

  2. Using where 使用了用where子句来过滤结果集

  3. Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。

  4. Using temporary 使用了临时表。

一些SQL优化建议

1、SQL语句不要写的太复杂。

一个SQL语句要尽量简单,不要嵌套太多层。

2、使用『临时表』缓存中间结果。

简化SQL语句的重要方法就是采用临时表暂存中间结果,这样可以避免程序中多次扫描主表,也大大减少了阻塞,提高了并发性能。

3、使用like的时候要注意是否会导致全表扫

有的时候会需要进行一些模糊查询比如

select id from table where username like ‘%hollis%’

关键词%hollis%,由于hollis前面用到了“%”,因此该查询会使用全表扫描,除非必要,否则不要在关键词前加%,
4、尽量避免使用!=或<>操作符

在where语句中使用!=或<>,引擎将放弃使用索引而进行全表扫描。

5、尽量避免使用 or 来连接条件

在 where 子句中使用 or 来连接条件,引擎将放弃使用索引而进行全表扫描。

可以使用
select id from t where num=10
union all
select id from t where num=20
替代
select id from t where num=10 or num=20

6、尽量避免使用in和not in

在 where 子句中使用 in和not in,引擎将放弃使用索引而进行全表扫描。

可以使用
select id from t where num between 10 and 20
替代
select id from t where num in (10,20)

7、可以考虑强制查询使用索引

select * from table force index(PRI) limit 2;(强制使用主键)
select * from table force index(hollis_index) limit 2;(强制使用索引"hollis_index")
select * from table force index(PRI,hollis_index) limit 2;(强制使用索引"PRI和hollis_index")

8、尽量避免使用表达式、函数等操作作为查询条件

9、尽量避免大事务操作,提高系统并发能力。

10、尽量避免使用游标

11、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

12、尽可能的使用 varchar/nvarchar 代替 char/nchar

13、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。

14、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率

15、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引。

你可能感兴趣的:(MYSQL)