带你玩转Istio-第5篇---非侵入的流量治理

本章介绍Istio提供的流量治理相关内容,涉及Istio流量治理解决的问题和实现原理,解析 Istio 提供的路由管理、熔断、负载均衡、故障注入等流量治理能力,以及如何通过Istio中的VirtualService、DestinationRule、Gateway、ServiceEntry等重要的服务管理配置来实现以上流量治理能力。在内容安排上,每节在讲解治理规则前都会从一个基础配置入手,再详细解析用法,并辅以典型应用案例来呈现其使用方法和应用场景。通过对本章的学习,可基于Istio的这些配置在不修改代码的情况下实现各种流量治理。

Istio流量治理原理

流量治理是一个非常宽泛的话题,例如:
◎ 动态修改服务间访问的负载均衡策略,比如根据某个请求特征做会话保持;
◎ 同一个服务有两个版本在线,将一部分流量切到某个版本上;
◎ 对服务进行保护,例如限制并发连接数、限制请求数、隔离故障服务实例等;
◎ 动态修改服务中的内容,或者模拟一个服务运行故障等。

在Istio中实现这些服务治理功能时无须修改任何应用的代码。较之微服务的SDK方式,Istio以一种更轻便、透明的方式向用户提供了这些功能。用户可以用自己喜欢的任意语言和框架进行开发,专注于自己的业务,完全不用嵌入任何治理逻辑。只要应用运行在Istio的基础设施上,就可以使用这些治理能力。

一句话总结 Istio 流量治理的目标:以基础设施的方式提供给用户非侵入的流量治理能力,用户只需关注自己的业务逻辑开发,无须关注服务访问管理。

 

带你玩转Istio-第5篇---非侵入的流量治理_第1张图片

                                            图3-1 Istio流量治理的概要流程

在控制面会经过如下流程:
(1)管理员通过命令行或者API创建流量规则;
(2)Pilot将流量规则转换为Envoy的标准格式;
(3)Pilot将规则下发给Envoy。
在数据面会经过如下流程:
(1)Envoy拦截Pod上本地容器的Inbound流量和Outbound流量;
(2)在流量经过Envoy时执行对应的流量规则,对流量进行治理。

下面具体看看Istio提供了哪些流量治理功能。因为Istio提供的流量治理功能非常多,所以这里仅从业务场景上列举出典型和常用的功能。

负载均衡

负载均衡从严格意义上讲不应该算治理能力,因为它只做了服务间互访的基础工作,在服务调用方使用一个服务名发起访问的时候能找到一个合适的后端,把流量导过去。

如图3-2所示,传统的负载均衡一般是在服务端提供的,例如用浏览器或者手机访问一个 We b 网站时,一般在网站入口处有一个负载均衡器来做请求的汇聚和转发。服务的虚拟 IP 和后端实例一般是通过静态配置文件维护的,负载均衡器通过健康检查保证客户端的请求被路由到健康的后端实例上。

带你玩转Istio-第5篇---非侵入的流量治理_第2张图片

                                                                                  图3-2 服务端的负载均衡器

在微服务场景下,负载均衡一般和服务发现配合使用,每个服务都有多个对等的服务实例,需要有一种机制将请求的服务名解析到服务实例地址上。服务发现负责从服务名中解析一组服务实例的列表,负载均衡负责从中选择一个实例。

如图 3-3 所示为服务发现和负载均衡的工作流程。不管是 SDK 的微服务架构,还是Istio这样的Service Mesh架构,服务发现和负载均衡的工作流程都是类似的,如下所述。

(1)服务注册。各服务将服务名和服务实例的对应信息注册到服务注册中心。
(2)服务发现。在客户端发起服务访问时,以同步或者异步的方式从服务注册中心获取服务对应的实例列表。
(3)负载均衡。根据配置的负载均衡算法从实例列表中选择一个服务实例。

 

 

带你玩转Istio-第5篇---非侵入的流量治理_第3张图片

                                                 图3-3 服务发现和负载均衡的工作流程

Istio的负载均衡正是其中的一个具体应用。在Istio中,Pilot负责维护服务发现数据。如图 3-4 所示为 Istio 负载均衡的流程,Pilot将服务发现数据通过 Envoy的标准接口下发给数据面Envoy,Envoy则根据配置的负载均衡策略选择一个实例转发请求。Istio当前支持的主要负载均衡算法包括:轮询、随机和最小连接数算法。

 

带你玩转Istio-第5篇---非侵入的流量治理_第4张图片

                                                                图3-4 Istio负载均衡的流程

在Kubernetes上支持Service的重要组件Kube-proxy,实际上也是运行在工作节点的一个网络代理和负载均衡器,它实现了Service模型,默认通过轮询等方式把Service访问转发到后端实例Pod上,如图3-5所示。

带你玩转Istio-第5篇---非侵入的流量治理_第5张图片

                                             图3-5 Kubernetes的负载均衡

服务熔断

熔断器在生活中一般指可以自动操作的电气开关,用来保护电路不会因为电流过载或者短路而受损,典型的动作是在检测到故障后马上中断电流。

“熔断器”这个概念延伸到计算机世界中指的是故障检测和处理逻辑,防止临时故障或意外导致系统整体不可用,最典型的应用场景是防止网络和服务调用故障级联发生,限制故障的影响范围,防止故障蔓延导致系统整体性能下降或雪崩。

如图 3-6 所示为级联故障示例,可以看出在 4 个服务间有调用关系,如果后端服务recommendation由于各种原因导致不可用,则前端服务 forecast和 frontend都会受影响。在这个过程中,若单个服务的故障蔓延到其他服务,就会影响整个系统的运行,所以需要让故障服务快速失败,让调用方服务forecast和frontend知道后端服务recommendation出现问题,并立即进行故障处理。这时,非常小概率发生的事情对整个系统的影响都足够大。

带你玩转Istio-第5篇---非侵入的流量治理_第6张图片

                                                     图3-6 级联故障示例

在Hystrix官方曾经有这样一个推算:如果一个应用包含30个依赖的服务,每个服务都可以保证99.99%可靠性地正常运行,则从整个应用角度看,可以得到99.9930=99.7%的正常运行时间,即有0.3%的失败率,在10亿次请求中就会有3 000 000多种失败,每个月就会有两个小时以上的宕机。即使其他服务都是运行良好的,只要其中一个服务有这样0.001%的故障几率,对整个系统就都会产生严重的影响。

关于熔断的设计,Martin Fowler 有一个经典的文章(https://martinfowler.com/bliki/CircuitBreaker.html),其中描述的熔断主要应用于微服务场景下的分布式调用中:在远程调用时,请求在超时前一直挂起,会导致请求链路上的级联故障和资源耗尽;熔断器封装了被保护的逻辑,监控调用是否失败,当连续调用失败的数量超过阈值时,熔断器就会跳闸,在跳闸后的一定时间段内,所有调用远程服务的尝试都将立即返回失败;同时,熔断器设置了一个计时器,当计时到期时,允许有限数量的测试请求通过;如果这些请求成功,则熔断器恢复正常操作;如果这些请求失败,则维持断路状态。Martin把这个简单的模型通过一个状态机来表达,我们简单理解下,如图3-7所示。

带你玩转Istio-第5篇---非侵入的流量治理_第7张图片

                                                                图3-7 熔断器状态机

图3-7上的三个点表示熔断器的状态,下面分别进行解释。
◎ 熔断关闭:熔断器处于关闭状态,服务可以访问。熔断器维护了访问失败的计数器,若服务访问失败则加一。
◎ 熔断开启:熔断器处于开启状态,服务不可访问,若有服务访问则立即出错。
◎ 熔断半开启:熔断器处于半开启状态,允许对服务尝试请求,若服务访问成功则说明故障已经得到解决,否则说明故障依然存在。

图上状态机上的几条边表示几种状态流转,如表3-1所示。

                                                    表3-1 熔断器的状态流转

带你玩转Istio-第5篇---非侵入的流量治理_第8张图片

Martin这个状态机成为后面很多系统实现的设计指导,包括最有名的Hystrix,当然,Istio的异常点检测也是按照类似语义工作的。

1.Hystrix熔断

关于熔断,大家比较熟悉的一个落地产品就是Hystrix。Hystrix是Netflix提供的众多服务治理工具集中的一个,在形态上是一个Java库,在2011年出现,后来多在Spring Cloud中配合其他微服务治理工具集一起使用。

Hystrix的主要功能包括:
◎ 阻断级联失败,防止雪崩;
◎ 提供延迟和失败保护;
◎ 快速失败并即时恢复;
◎ 对每个服务调用都进行隔离;
◎ 对每个服务都维护一个连接池,在连接池满时直接拒绝访问;
◎ 配置熔断阈值,对服务访问直接走失败处理 Fallback 逻辑,可以定义失败处理逻辑;
◎ 在熔断生效后,在设定的时间后探测是否恢复,若恢复则关闭熔断;

◎ 提供实时监控、告警和操作控制。

Hystrix的熔断机制基本上与Martin的熔断机制一致。在实现上,如图3-8所示,Hystrix将要保护的过程封装在一个 HystrixCommand 中,将熔断功能应用到调用的方法上,并监视对该方法的失败调用,当失败次数达到阈值时,后续调用自动失败并被转到一个Fallback方法上。在 HystrixCommand 中封装的要保护的方法并不要求是一个对远端服务的请求,可以是任何需要保护的过程。每个 HystrixCommand都可以被设置一个 Fallback方法,用户可以写代码定义Fallback方法的处理逻辑。

带你玩转Istio-第5篇---非侵入的流量治理_第9张图片

                                                图3-8 HystrixCommand熔断处理

在 Hystrix 的资源隔离方式中除了提供了熔断,还提供了对线程池的管理,减少和限制了单个服务故障对整个系统的影响,提高了整个系统的弹性。

在使用上,不管是直接使用Netflix的工具集还是Spring Cloud中的包装,都建议在代码中写熔断处理逻辑,有针对性地进行处理,但侵入了业务代码,这也是与 Istio 比较大的差别。

业界一直以 Hystrix 作为熔断的实现模板,尤其是基于 Spring Cloud。但遗憾的是,Hystrix 在 1.5.18 版本后就停止开发和代码合入,转为维护状态,其替代者是不太知名的Resilience4J。

2.Istio熔断

云原生场景下的服务调用关系更加复杂,前文提到的若干问题也更加严峻,Istio提供了一套非侵入的熔断能力来应对这种挑战。

与Hystrix类似,在Istio中也提供了连接池和故障实例隔离的能力,只是概念术语稍有不同:前者在 Istio 的配置中叫作连接池管理,后者叫作异常点检测,分别对应 Envoy的熔断和异常点检测。

Istio在0.8版本之前使用V1alpha1接口,其中专门有个CircuitBreaker配置,包含对连接池和故障实例隔离的全部配置。在Istio 1.1的V1alpha3接口中,CircuitBreaker功能被拆分成连接池管理(ConnectionPoolSettings)和异常点检查(OutlierDetection)这两种配置,由用户选择搭配使用。

首先看看解决的问题,如下所述。

(1)在 Istio 中通过限制某个客户端对目标服务的连接数、访问请求数等,避免对一个服务的过量访问,如果超过配置的阈值,则快速断路请求。还会限制重试次数,避免重试次数过多导致系统压力变大并加剧故障的传播;

(2)如果某个服务实例频繁超时或者出错,则将该实例隔离,避免影响整个服务。

以上两个应用场景正好对应连接池管理和异常实例隔离功能。

Istio 的连接池管理工作机制对 TCP 提供了最大连接数、连接超时时间等管理方式,对HTTP提供了最大请求数、最大等待请求数、最大重试次数、每连接最大请求数等管理方式,它控制客户端对目标服务的连接和访问,在超过配置时快速拒绝。

如图3-9所示,通过Istio的连接池管理可以控制frontend服务对目标服务forecast的请求:

(1)当frontend服务对目标服务forecast的请求不超过配置的最大连接数时,放行;

(2)当 frontend服务对目标服务 forecast的请求不超过配置的最大等待请求数时,进入连接池等待;

(3)当 frontend服务对目标服务 forecast的请求超过配置的最大等待请求数时,直接拒绝。

带你玩转Istio-第5篇---非侵入的流量治理_第10张图片

                                                       图3-9 Istio的连接池管理

Istio提供的异常点检查机制动态地将异常实例从负载均衡池中移除,如图3-10所示,当连续的错误数超过配置的阈值时,后端实例会被移除。异常点检查在实现上对每个上游服务都进行跟踪,对于HTTP服务,如果有主机返回了连续的5xx,则会被踢出服务池;而对于TCP服务,如果到目标服务的连接超时和失败,则都会被记为出错。

带你玩转Istio-第5篇---非侵入的流量治理_第11张图片

                                                    图3-10 Istio异常点检查

另外,被移除的实例在一段时间之后,还会被加回来再次尝试访问,如果可以访问成功,则认为实例正常;如果访问不成功,则实例不正常,重新被逐出,后面驱逐的时间等于一个基础时间乘以驱逐的次数。这样,如果一个实例经过以上过程的多次尝试访问一直不可用,则下次会被隔离更久的时间。可以看到,Istio 的这个流程也是基于 Martin 的熔断模型设计和实现的,不同之处在于这里没有熔断半开状态,熔断器要打开多长时间取决于失败的次数。

另外,在 Istio 中可以控制驱逐比例,即有多少比例的服务实例在不满足要求时被驱逐。当有太多实例被移除时,就会进入恐慌模式,这时会忽略负载均衡池上实例的健康标记,仍然会向所有实例发送请求,从而保证一个服务的整体可用性。

下面对Istio与Hystrix的熔断进行简单对比,如表3-2所示。可以看到与Hystrix相比,Istio实现的熔断器其实是一个黑盒,和业务没有耦合,不涉及代码,只要是对服务访问的保护就可以用,配置比较简单、直接。

                                                表3-2 Istio和Hystrix熔断的简单对比

带你玩转Istio-第5篇---非侵入的流量治理_第12张图片

熔断功能本来就是叠加上去的服务保护,并不能完全替代代码中的异常处理。业务代码本来也应该做好各种异常处理,在发生异常的时候通知调用方的代码或者最终用户,如下所示:

public void callService( String serviceName ) throws Exception {
  try {
  // call remote service
     RestTemplate restTemplate = new ResTemplate();
     String result = restTemplate.getForObject(serviceName, String.class);

  }cathch( Exception e ) {
  // exception handle
     dealException(e)
  }

}

 

Istio 的熔断能力是对业务透明的,不影响也不关心业务代码的写法。当 Hystrix 开发的服务运行在Istio环境时,两种熔断机制叠加在一起。在故障场景下,如果Hystrix和Istio两种规则同时存在,则严格的规则先生效。当然,不推荐采用这种做法,建议业务代码处理好业务,把治理的事情交给Istio来做。

你可能感兴趣的:(带你玩转Istio)