本文旨在用简短的代码块完成对OkHttp3大体流程的解析,不求甚解,适可而止,以防走丢(っ•̀ω•́)っ✎⁾⁾
implementation("com.squareup.okhttp3:okhttp:3.12.0")
OkHttpClient okHttpClient = new OkHttpClient.Builder().build();
Request request = new Request.Builder().url("https://www.baidu.com").build();
Call call = mOkHttpClient.newCall(request);
try {
Response response = call.execute();
Log.e("-->", response.body().string());
} catch (IOException e) {
e.printStackTrace();
}
先来回顾一下最基本的用法,这是同步请求,异步请求就是:
call.enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
}
@Override
public void onResponse(Call call, Response response) throws IOException {
}
});
1.构建OkHttpClient实例
源码里是一系列的参数初始化,如dispatcher等
2.构建Request实例
对请求信息的参数初始化,如url地址、方法(get、post等)、header、body等
3.同步请求call.execute()
@Override
public Response execute() throws IOException {
try {
client.dispatcher().executed(this);
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {
e = timeoutExit(e);
eventListener.callFailed(this, e);
throw e;
} finally {
client.dispatcher().finished(this);
}
}
适当精简一下代码,这里出现了第一步构建OkHttpClient时初始化的dispatcher,追踪executed方法
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
synchronized void executed(RealCall call) {
runningSyncCalls.add(call);
}
这是把该请求添加到正在运行的同步队列中,而上一步的getResponseWithInterceptorChain方法是构建一个拦截器链,返回Response结果,会在下文重点解析
4.异步请求call.enqueue(Callback responseCallback)
@Override
public void enqueue(Callback responseCallback) {
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
还是dispatcher,追踪enqueue方法:
/** Ready async calls in the order they'll be run. */
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
void enqueue(AsyncCall call) {
synchronized (this) {
readyAsyncCalls.add(call);
}
promoteAndExecute();
}
private boolean promoteAndExecute() {
List<AsyncCall> executableCalls = new ArrayList<>();
boolean isRunning;
synchronized (this) {
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall asyncCall = i.next();
if (runningAsyncCalls.size() >= maxRequests) break; // Max capacity.
if (runningCallsForHost(asyncCall) >= maxRequestsPerHost) continue; // Host max capacity.
i.remove();
executableCalls.add(asyncCall);
runningAsyncCalls.add(asyncCall);
}
isRunning = runningCallsCount() > 0;
}
for (int i = 0, size = executableCalls.size(); i < size; i++) {
AsyncCall asyncCall = executableCalls.get(i);
asyncCall.executeOn(executorService());
}
return isRunning;
}
首先将请求加入到准备请求队列readyAsyncCalls中,然后在promoteAndExecute方法中遍历准备请求队列,如果正在请求队列runningAsyncCalls小于支持的最大请求数maxRequests,也就是说还有位置的话,就把准备请求队列添加到正在请求队列中。追踪executorService()方法:
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}
会创建一个线程池,第一个参数0,代表核心线程数为0个,也就是当线程工作结束后会清除所有线程;第二个参数Integer的最大值,代表理论上尽可能多的创建线程,但是受之前判断中maxRequests的限制,超过maxRequests就不会再创建线程;第三个参数60代表线程空闲60s之后会被销毁。
回过头来再看AsyncCall这个类:
final class AsyncCall extends NamedRunnable {
...
}
public abstract class NamedRunnable implements Runnable {
@Override
public final void run() {
String oldName = Thread.currentThread().getName();
Thread.currentThread().setName(name);
try {
execute();
} finally {
Thread.currentThread().setName(oldName);
}
}
protected abstract void execute();
}
实现Runnable重写run()方法,向下查找execute的实现类,回到RealCall类中:
@Override
protected void execute() {
boolean signalledCallback = false;
timeout.enter();
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
e = timeoutExit(e);
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
eventListener.callFailed(RealCall.this, e);
responseCallback.onFailure(RealCall.this, e);
}
} finally {
client.dispatcher().finished(this);
}
}
又看见了眼熟的getResponseWithInterceptorChain()方法,返回Response,然后是对Response结果的回调
5.拦截器链getResponseWithInterceptorChain()
拦截器是OkHttp中提供的一种强大机制,它可以实现网络监听、请求以及响应重写、请求失败重试等功能
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
该方法创建了一系列的拦截器添加到拦截器集合中,并创建拦截器链RealInterceptorChain,最后调用proceed方法
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
return response;
在这再次创建拦截器链,并且index+1,在intercept中去请求,返回response,一种类似于递归的思想,使得这几个拦截器串成链。
追踪intercept方法,是Interceptor接口的抽象方法
public interface Interceptor {
Response intercept(Chain chain) throws IOException;
}
向下查找实现,这里有OkHttp实现好的五种拦截器
按照拦截器集合的添加顺序,先看RetryAndFollowUpInterceptor重定向拦截器,用于网络请求失败重连功能:
@Override
public Response intercept(Chain chain) throws IOException {
StreamAllocation streamAllocation = new StreamAllocation(client.connectionPool(),
createAddress(request.url()), call, eventListener, callStackTrace);
int followUpCount = 0;
Response priorResponse = null;
Response response;
while (true) {
try {
response = realChain.proceed(request, streamAllocation, null, null);
} catch (RouteException e) {
} catch (IOException e) {
}
Request followUp;
try {
followUp = followUpRequest(response, streamAllocation.route());
} catch (IOException e) {
streamAllocation.release();
throw e;
}
if (followUp == null) {
streamAllocation.release();
return response;
}
if (++followUpCount > MAX_FOLLOW_UPS) {//重连超过一定次数,则释放资源,停止请求
streamAllocation.release();
throw new ProtocolException("Too many follow-up requests: " + followUpCount);
}
}
}
创建StreamAllocation网络请求所需要的组件,调用proceed创建下一个拦截器,根据异常结果或响应结果判断是否重新请求。
BridgeInterceptor桥接拦截器给request添加头部信息header
@Override
public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
Response networkResponse = chain.proceed(requestBuilder.build());
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
String contentType = networkResponse.header("Content-Type");
responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
负责将用户构建的一个Request请求转化为能够进行网络访问的请求,并将服务端返回的Response转化为用户可用的Response,如gzip压缩和解压。
CacheInterceptor缓存拦截器
先看一下OkHttp缓存的使用方法:
Cache cache = new Cache(new File(getCacheDir(), "cache"), 10 * 1024 * 1024);//10MB
OkHttpClient client = new OkHttpClient.Builder().cache(cache).build();
进入Cache类,发现使用的是DiskLruCache
public Cache(File directory, long maxSize) {
this(directory, maxSize, FileSystem.SYSTEM);
}
Cache(File directory, long maxSize, FileSystem fileSystem) {
this.cache = DiskLruCache.create(fileSystem, directory, VERSION, ENTRY_COUNT, maxSize);
}
先看一下Cache的put方法
@Nullable
CacheRequest put(Response response) {
String requestMethod = response.request().method();
if (HttpMethod.invalidatesCache(response.request().method())) {
try {
remove(response.request());
} catch (IOException ignored) {
// The cache cannot be written.
}
return null;
}
if (!requestMethod.equals("GET")) {
// Don't cache non-GET responses. We're technically allowed to cache
// HEAD requests and some POST requests, but the complexity of doing
// so is high and the benefit is low.
return null;
}
if (HttpHeaders.hasVaryAll(response)) {
return null;
}
Entry entry = new Entry(response);
DiskLruCache.Editor editor = null;
try {
editor = cache.edit(key(response.request().url()));
if (editor == null) {
return null;
}
entry.writeTo(editor);
return new CacheRequestImpl(editor);
} catch (IOException e) {
abortQuietly(editor);
return null;
}
}
首先获取到请求的方法,进HttpMethod.invalidatesCache方法里
public static boolean invalidatesCache(String method) {
return method.equals("POST")
|| method.equals("PATCH")
|| method.equals("PUT")
|| method.equals("DELETE")
|| method.equals("MOVE"); // WebDAV
}
得知如果方法是这几个的话,就会把该请求的缓存remove掉
然后判断方法是不是“GET”,如果不是get方法,该请求就不会缓存
然后判断HttpHeaders.hasVaryAll方法
public static boolean hasVaryAll(Headers responseHeaders) {
return varyFields(responseHeaders).contains("*");
}
header带“*”的也不缓存
接下来创建Entry对象,它持有response的一系列参数:
Entry(Response response) {
this.url = response.request().url().toString();
this.varyHeaders = HttpHeaders.varyHeaders(response);
this.requestMethod = response.request().method();
this.protocol = response.protocol();
this.code = response.code();
this.message = response.message();
this.responseHeaders = response.headers();
this.handshake = response.handshake();
this.sentRequestMillis = response.sentRequestAtMillis();
this.receivedResponseMillis = response.receivedResponseAtMillis();
}
得到一个editor进行写入缓存操作
public void writeTo(DiskLruCache.Editor editor) throws IOException {
BufferedSink sink = Okio.buffer(editor.newSink(ENTRY_METADATA));
sink.writeUtf8(url).writeByte('\n');
sink.writeUtf8(requestMethod).writeByte('\n');
sink.writeDecimalLong(varyHeaders.size()).writeByte('\n');
for (int i = 0, size = varyHeaders.size(); i < size; i++) {
sink.writeUtf8(varyHeaders.name(i)).writeUtf8(": ").writeUtf8(varyHeaders.value(i)).writeByte('\n');
}
sink.writeUtf8(new StatusLine(protocol, code, message).toString()).writeByte('\n');
sink.writeDecimalLong(responseHeaders.size() + 2).writeByte('\n');
for (int i = 0, size = responseHeaders.size(); i < size; i++) {
sink.writeUtf8(responseHeaders.name(i)).writeUtf8(": ").writeUtf8(responseHeaders.value(i)).writeByte('\n');
}
sink.writeUtf8(SENT_MILLIS).writeUtf8(": ").writeDecimalLong(sentRequestMillis).writeByte('\n');
sink.writeUtf8(RECEIVED_MILLIS).writeUtf8(": ").writeDecimalLong(receivedResponseMillis).writeByte('\n');
if (isHttps()) {
sink.writeByte('\n');
sink.writeUtf8(handshake.cipherSuite().javaName()).writeByte('\n');
writeCertList(sink, handshake.peerCertificates());
writeCertList(sink, handshake.localCertificates());
sink.writeUtf8(handshake.tlsVersion().javaName()).writeByte('\n');
}
sink.close();
}
再来看Cache的get方法:
@Nullable
Response get(Request request) {
String key = key(request.url());
DiskLruCache.Snapshot snapshot;
Entry entry;
try {
snapshot = cache.get(key);
if (snapshot == null) {
return null;
}
} catch (IOException e) {
// Give up because the cache cannot be read.
return null;
}
try {
entry = new Entry(snapshot.getSource(ENTRY_METADATA));
} catch (IOException e) {
Util.closeQuietly(snapshot);
return null;
}
Response response = entry.response(snapshot);
if (!entry.matches(request, response)) {
Util.closeQuietly(response.body());
return null;
}
return response;
}
看完了Cache的添加获取缓存,接下来看CacheInterceptor的intercept方法:
@Override public Response intercept(Chain chain) throws IOException {
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
cache.trackResponse(strategy);
}
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
}
// If we're forbidden from using the network and the cache is insufficient, fail.
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// If we don't need the network, we're done.
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (cache != null) {
if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
CacheRequest cacheRequest = cache.put(response);
return cacheWritingResponse(cacheRequest, response);
}
if (HttpMethod.invalidatesCache(networkRequest.method())) {
try {
cache.remove(networkRequest);
} catch (IOException ignored) {
// The cache cannot be written.
}
}
}
return response;
}
先拿到网络请求networkRequest和缓存响应cacheResponse,有以下几种判断:
如果网络请求和缓存响应都为空,那么报一个504的错误,拦截器链终止;
如果网络请求为空,那就把缓存响应返回,拦截器链终止;否则调用下一个拦截器;
如果缓存响应不为空,并且网络响应结果码是HTTP_NOT_MODIFIED,就返回缓存并更新;
如果网络响应有响应体并且可以缓存,就把缓存写进去,把网络响应返回;
最后,如果网络请求方法不是get,就删除这个请求的缓存。
ConnectInterceptor连接拦截器
@Override
public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
StreamAllocation是之前在第一个重定向拦截器RetryAndFollowUpInterceptor创建的,HttpCodec对象用于处理request和response,RealConnection用于网络请求io传输,调用proceed将这几个对象传递给下一个拦截器。