Yolov-1-TX2上用YOLOv3训练自己数据集的流程(VOC2007-TX2-GPU)
Yolov--2--一文全面了解深度学习性能优化加速引擎---TensorRT
Yolov--3--TensorRT中yolov3性能优化加速(基于caffe)
yolov-5-目标检测:YOLOv2算法原理详解
yolov--8--Tensorflow实现YOLO v3
yolov--9--YOLO v3的剪枝优化
yolov--10--目标检测模型的参数评估指标详解、概念解析
yolov--11--YOLO v3的原版训练记录、mAP、AP、recall、precision、time等评价指标计算
yolov--12--YOLOv3的原理深度剖析和关键点讲解
https://github.com/talebolano/yolov3-network-slimming
将Learning Efficient Convolutional Networks Through Network Slimming (ICCV 2017)应用在yolov3和yolov2上
1.对原始weights文件进行稀疏化训练
python sparsity_train.py -sr --s 0.0001 --image_folder coco.data --cfg yolov3.cfg --weights yolov3.weights
2.剪枝
python prune.py --cfg yolov3.cfg --weights checkpoints/yolov3_sparsity_100.weights --percent 0.3
3.对剪枝后的weights进行微调
python sparsity_train.py --image_folder coco.data --cfg prune_yolov3.cfg --weights prune_yolov3.weights
new_prune更新了算法,现在可以确保不会有某一层被减为0的情况发生,参考RETHINKING THE SMALLER-NORM-LESSINFORMATIVE ASSUMPTION IN CHANNEL PRUNING OF CONVOLUTION LAYERS(ICLR 2018)对剪枝后bn层β系数进行了保留
coco测试
1、配置:
待定:
$ pip show numpy
Name: numpy
Version: 1.14.2
Summary: NumPy: array processing for numbers, strings, records, and objects.
Home-page: http://www.numpy.org
Author: NumPy Developers
Author-email: [email protected]
License: BSD
Location: /usr/local/lib/python2.7/dist-packages
conda list 的CPU配置如下:
2019-5-24:
2019-5-25:
2019-5-25-2:内存不足
异常一:
IndentationError: expected an indented block
缩进问题:缩进2个tab键即可
2019-5-27:
CUDA_VISIBLE_DEVICES=7 python sparsity_train.py -sr --s 0.0001 --image_folder coco.data --cfg yolov3.cfg --weights yolov3.weights 2>1 | tee visualization/sparsity-tarin-yolov3.log
CUDA_VISIBLE_DEVICES=7 python prune.py --cfg yolov3.cfg --weights checkpoints/yolov3_sparsity_100.weights --percent 0.3
2019-5-28:
python sparsity_train.py --cfg prune_yolov3-80lei-111.cfg --weights checkpoints-4/prune_yolo v3_sparsity_416_0.0001_final_1_111.weights
2019-5-29:
CUDA_VISIBLE_DEVICES=7 ./darknet detect cfg/prune_yolov3-80lei-111.cfg yolov3_sparsity_416_0.0001_final_1_442.weights data/dog.jpg
CUDA_VISIBLE_DEVICES=7 ./darknet detect cfg/prune_yolov3-111-80-0.5.cfg yolov3-network-slimming/yolo/checkpoints-2/prune_yolov3_sparsity_416_0.0001_final_1_111-0.5.weights data/dog.jpg
分段错误:.cfg文件有误,需要更改
多GPU训练原版--yolov3
CUDA_VISIBLE_DEVICES=7 ./darknet detector train cfg/voc-1.data cfg/yolov3-1.cfg -gpus 8,9
CUDA_VISIBLE_DEVICES=7 ./darknet detector train cfg/voc-1.data cfg/prune_yolov3-111-80-0.5.cfg yolov3-network-slimming/yolo/checkpoints-2/prune_yolov3_sparsity_416_0.0001_final_1_111-0.5.weights
修改.cfg的batch=32
subdivisions=16
2019-6-2: