参考资料:
1.java四种应用类型 https://www.cnblogs.com/liyutian/p/9690974.html
2.一篇文章搞定java中的垃圾回收机制面试题 https://blog.csdn.net/weixin_39067991/article/details/81045201
3. java垃圾回收机制中引用计数法和可达性分析法(最详细)https://www.cnblogs.com/igoodful/p/8727241.html
java GC的特点: c的垃圾回收是人工的,工作量大,但是可控性高。 java是自动化的,但是可控性很差,甚至有时会出现内存溢出的情况, 内存溢出也就是jvm分配的内存中对象过多,超出了最大可分配内存的大小。 System.gc()方法: System.gc()用于调用垃圾收集器,在调用时,垃圾收集器将运行以回收未使用的内存空间。它将尝试释放被丢弃对象占用的内存。 System.gc()调用附带一个免责声明,无法保证对垃圾收集器的调用。 System.gc()并不能说是完美主动进行了垃圾回收。
我们从三个角度来理解gc
1jvm怎么确定哪些对象应该进行回收
2jvm会在什么时候进行垃圾回收的动作
3jvm到底是怎么清楚垃圾对象的
对象是否会被回收的两个经典算法:引用计数法可达性分析算法。
一.引用计数法
简单的来说就是判断对象的引用数量。
实现方式:每个对象有引用计数器,每当有引用对他进行引用时,计数器的值就加1,当引用失效,也就是不在执行此对象是,他的计数器的值就减1,若某一个对象的计数器的值为0,那么表示这个对象没有人对他进行引用,也就是意味着是一个失效的垃圾对象,就会被gc进行回收。
缺点:这种简单的算法在当前的jvm中并没有采用,原因是他并不能解决对象之间循环引用的问题。
假设有A和B两个对象之间互相引用,也就是说A对象中的一个属性是B,B中的一个属性时A,这种情况下由于他们的相互引用,从而是垃圾回收机制无法识别。
引用的4种类型:
1. 强用用
java中默认声明的就是强引用,比如:
Object obj = new Object(); //只要obj还指向Object对象,Object对象就不会被回收
obj = null; //手动置null
obj 就是对 Object 对象的引用
只要强引用存在,垃圾回收器将永远不会回收被引用的对象,哪怕内存不足时,JVM也会直接抛出OutOfMemoryError,不会去回收。如果想中断强引用与对象之间的联系,可以显示的将强引用赋值为null,这样一来,JVM就可以适时的回收对象了
2. 软引用
软引用是用来描述一些非必需但仍有用的对象。在内存足够的时候,软引用对象不会被回收,只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。这种特性常常被用来实现缓存技术,比如网页缓存,图片缓存等。
在 JDK1.2 之后,用java.lang.ref.SoftReference类来表示软引用
private static void testSoftReference() {
byte[] buff = null;
for (int i = 0; i < 10; i++) {
buff = new byte[1024 * 1024];
SoftReference sr = new SoftReference<>(buff);
list.add(sr);
}
System.gc(); //主动通知垃圾回收
3. 弱引用
弱引用的引用强度比软引用要更弱一些,无论内存是否足够,只要 JVM 开始进行垃圾回收,那些被弱引用关联的对象都会被回收。在 JDK1.2 之后,用 java.lang.ref.WeakReference 来表示弱引用。
4. 虚引用
虚引用是最弱的一种引用关系,如果一个对象仅持有虚引用,那么它就和没有任何引用一样,它随时可能会被回收,在 JDK1.2 之后,用 PhantomReference 类来表示,通过查看这个类的源码,发现它只有一个构造函数和一个 get() 方法,而且它的 get() 方法仅仅是返回一个null,也就是说将永远无法通过虚引用来获取对象,虚引用必须要和 ReferenceQueue 引用队列一起使用。
二.可达性分析算法
通过判断对象的引用链是否可达来决定对象是否可以被回收。可达性分析算法是从离散数学中的图论引入的,程序把所有的引用关系看作一张图,通过一系列的名为GC Roots的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连(就是从 GC Roots 到这个对象不可达)时,则证明此对象是不可用的。
两种算法比较:
1. 会在cpu空闲的时候自动进行回收 2. 在堆内存存储满了之后 3. 主动调用System.gc()后尝试进行回收
如何回收说的也就是垃圾收集的算法。 算法又有四个:标记-清除算法,复制算法,标记-整理算法,分代收集算法
1 标记-清除算法
这是最基础的一种算法,分为两个步骤,第一个步骤就是标记,也就是标记处所有需要回收的对象,标记完成后就进行统一的回收掉哪些带有标记的对象。 优点: 简单 缺点: 1. 效率问题 2.空间问题,标记清除之后会产生大量不连续的内存碎片,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而 造成内存空间浪费
2.复制算法
复制将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况。只是这种算法的代价是将内存缩小为原来的一半。
实际情况中,将内存分为一个较大的Eden空间和两个较小的Survivor空间,每次使用Eden和一个Survivor,最后再把Eden和Survivor中存活的对象复制到另外一个Survivor,清理Eden和Survivor.
HotSpot默认eden和Survivor大小比为8:1:1
3. 标记-整理算法:
标记整理算法与标记清除算法很相似,但最显著的区别是:
标记清除算法仅对不存活的对象进行处理,剩余存活对象不做任何处理,造成内存碎片;
而标记整理算法不仅对不存活对象进行处理清除,还对剩余的存活对象进行整理,重新整理,因此其不会产生内存碎片。
4.分代收集算法:
分代收集算法是一种比较智能的算法,也是现在jvm使用最多的一种算法,他本身其实不是一个新的算法,而是他会在具体的场景自动选择以上三种算法进行垃圾对象回收。
那么现在的重点就是分代收集算法中说的自动根据具体场景进行选择。这个具体场景到底是什么场景。 场景其实指的是针对jvm的哪一个区域,1.7之前jvm把内存分为三个区域:新生代,老年代,永久代
了解过场景之后再结合分代收集算法得出结论: 1、在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法。只需要付出少量存活对象的复制成本就可以完成收集。 2、老年代中因为对象存活率高、没有额外空间对他进行分配担保,就必须用标记-清除或者标记-整理。