[物理学与PDEs]第2章第5节 一维流体力学方程组的 Lagrange 形式 5.2 Lagrange 坐标

 

 

1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t\\ &\ra \exists\ m,\st \rd m=-\rho u\rd t+\rho \rd x. \eea \eeex$$ 取 $$\beex \bea t'&=t,\\ m&=\int_{(0,0)}^{(t,x)} -\rho u\rd x+\rho \rd t, \eea \eeex$$ 则称 $(t',m)$ 为 Lagrange 坐标.

 

2. Lagrange 坐标的物理意义

(1) $m$ 表示质量, 为质点坐标.

(2) 由 Euler 坐标 $(t,x)$ 过渡到 Lagrange 坐标 $(t',m)=(t,m)$ 本质上就是取流体质点在 $(t,x)$ 平面上的运动规律曲线作为坐标曲线.

 

3. Euler 坐标、Lagrange 坐标的互换

(1) Euler $\to$ Lagrange: $$\beex \bea \rd m=-\rho u\rd t+\rho\rd x,&\quad \cfrac{\p }{\p t}=\cfrac{\p}{\p t'}-\rho u\cfrac{\p }{\p m},\\ \rd t'=\rd t,&\quad\cfrac{\p}{\p x}=\rho \cfrac{\p}{\p m}. \eea \eeex$$

(2) Lagrange $\to$ Euler: $$\beex \bea \rd x=u\rd t+\tau \rd m,&\quad \cfrac{\p}{\p t'}=\cfrac{\p}{\p t}+u\cfrac{\p}{\p x},\\ \rd t=\rd t',&\quad \cfrac{\p}{\p m}=\tau \cfrac{\p}{\p x}. \eea \eeex$$ 

你可能感兴趣的:(des)