[物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

5. 6 弹性静力学方程组的定解问题

 

 

 

 

 

5. 6. 1 线性弹性静力学方程组

 

 

 

 

1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3.  \eee$$

 

 

2.  (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\ C_0>0,\st \int_\Omega |{\bf E}|^2\rd x \geq C_0\sen{{\bf u}}_{H^1(\Omega)}^2,\quad \forall\ {\bf u}\in H^1_0(\Omega). \eex$$

 

 

3.  若 ${\bf A}=(a_{ijkl})$ 满足稳定性条件, 则 \eqref{5_6_1_le} 在有界区域上有弱解的存在性、唯一性及正则性.

 

 

 

5. 6. 2 非线性弹性静力学方程组

 

 

 

 

1.  非线性弹性静力学方程组 $$\bee\label{5_6_2_nle} -\sum_{j,k,l}a_{ijkl}(\n{\bf y})\cfrac{\p ^2y_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3.  \eee$$

 

 

2.  $I=\sev{\ba{ccc} n_1&n_2&n_3\\ \cfrac{\p y_2}{\p x_1}&\cfrac{\p y_2}{\p x_2}&\cfrac{\p y_2}{\p x_3}\\ \cfrac{\p y_3}{\p x_1}&\cfrac{\p y_3}{\p x_2}&\cfrac{\p y_3}{\p x_3} \ea}$ 仅与 $y_2,y_3$ 的切向偏导数有关. 事实上, $$\beex \bea I&=-\cfrac{\p y_2}{\p x_1}\sex{n_2\cfrac{\p y_3}{\p x_3}-n_3\cfrac{\p y_3}{\p x_2}}\\ &\quad+\cfrac{\p y_2}{\p x_2}\sex{n_1\cfrac{\p y_3}{\p x_3} -n_3\cfrac{\p y_3}{\p x_1}}\\ &\quad-\cfrac{\p y_2}{\p x_3}\sex{n_1\cfrac{\p y_3}{\p x_2}-n_2\cfrac{\p y_3}{\p x_1}}. \eea \eeex$$ 记 $$\beex \bea {\bf a}&=(0,-n_3,n_2)^T,\\ {\bf b}&=(-n_3,0,n_1)^T,\\ {\bf c}&=(-n_2,n_1,0)^T,\\ {\bf d}&=\sex{ -n_2\cfrac{\p y_3}{\p x_3}+n_3\cfrac{\p y_3}{\p x_2}, n_1\cfrac{\p y_3}{\p x_3} -n_3\cfrac{\p y_3}{\p x_1},-n_1\cfrac{\p y_3}{\p x_2}+n_2\cfrac{\p y_3}{\p x_1}}, \eea \eeex$$ 则直接计算有 $$\bex {\bf a}\cdot{\bf n}={\bf b}\cdot{\bf n}={\bf b}\cdot{\bf n}={\bf d}\cdot{\bf n}=0.  \eex$$ 于是 $$\bex I=\n_{{\bf d}}y_2,\quad {\bf d}=(-\n_{{\bf a}}y_3,-\n_{{\bf b}}y_3,-\n_{{\bf c}}y_3). \eex$$

 

 

3.  \eqref{5_6_2_nle} 可赋以的边界条件是 ${\bf y}={\bf y}_0$, ${\bf P}{\bf n}={\bf\sigma}({\bf y},\n_{{\bf \tau}}{\bf y})$, 或其组合.

 

 

4.  \eqref{5_6_2_nle} 的解的唯一性一般不成立.

 

 

5.  问题: $$\bee\label{5_6_2_bvp} \bea -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3,&\quad\mbox{in }\Omega;\\ {\bf y}|_{\vGa_1}={\bf h},\ {\bf P}{\bf n}={\bf \sigma},&\quad\mbox{on }\p\Omega \eea \eee$$ 的解的存在性.

 

(1)  化 \eqref{5_6_2_bvp} 为泛函 (弹性体总势能) 的极小值问题.

 

(2)  通过下方有界、极小化序列、弱下半连续等方法求得极小值问题的解.

 

(3)  弱解的正则性 (问题).

 

 

6.  多凸的概念: $\hat W({\bf F})$ 为多凸的 (polyconvex), 如果 $\hat W({\bf F})$ 能表为 ${\bf F}$ 的子行列式的凸函数.

 

 

7.  函数 $g({\bf F})=\tr({\bf F}^T{\bf F})$, $\forall\ {\bf F}\in \bbR^{3\times 3}$ 是严格凸的.

 

你可能感兴趣的:(des)