两天入门Google Wide and deep (模型)推荐系统的资料

前言:应该只要一天时间,先看Google英文论文,配合中文翻译:http://d0evi1.com/widedeep-recsys,再看些官方的代码,需要先了解下tensorflow的feature API:

tf.contrib.layers 中提供了一系列的函数定义不同类型的 feature columns:
tf.contrib.layers.sparse_column_with_XXX 构建低维离散特征
sparse_feature_a = sparse_column_with_hash_bucket(…)
sparse_feature_b = sparse_column_with_hash_bucket(…)
tf.contrib.layers.crossed_column 构建离散特征的组合
sparse_feature_a_x_sparse_feature_b = crossed_column([sparse_feature_a, sparse_feature_b], …)
tf.contrib.layers.real_valued_column 构建连续型实数特征
real_feature_a = real_valued_column(…)
tf.contrib.layers.embedding_column 构建 embedding 特征
sparse_feature_a_emb = embedding_column(sparse_id_column=sparse_feature_a, )
feature_column API:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/feature_column/feature_column_lib.py

1)Google 官方资料:

wide and deep论文:
https://arxiv.org/pdf/1606.07792.pdf
wide and depp 主函数:https://github.com/tensorflow/tensorflow/blob/b474e55c23e5cc42b01a1ddea34751f01110deb6/tensorflow/python/estimator/canned/dnn_linear_combined.py
tf.estimator.DNNLinearCombinedClassifier主函数参数:
https://www.w3cschool.cn/tensorflow_python/tensorflow_python-4gn82dty.html
wide_n_deep_tutorial.py代码例子:https://github.com/tensorflow/tensorflow/blob/88abddbc30a34855d8cdf44c81eac388fbec955b/tensorflow/examples/learn/wide_n_deep_tutorial.py
wide_and_deep.md:
https://github.com/tensorflow/tensorflow/blob/752dcb61ef7a8fd6555909dc37c1f2a2e5792227/tensorflow/docs_src/tutorials/wide_and_deep.md
TensorFlow Linear Model Tutorial:
https://github.com/tensorflow/tensorflow/blob/752dcb61ef7a8fd6555909dc37c1f2a2e5792227/tensorflow/docs_src/tutorials/wide.md

2)非官网参考资料:

TensorFlow下的大规模线性模型:
http://www.jianshu.com/p/afe41ae17a16
tensorflow逻辑回归:http://blog.csdn.net/willduan1/article/details/53105603
tensorlfow线性模型
http://shuaizhang.tech/2016/12/17/Tensorflow-Tutorial-5-Linear-Model-%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B/
wide and depp 论文中文翻译:
基于Wide & Deep Learning的推荐系统http://d0evi1.com/widedeep-recsys/
Summary Of recommender system surveys in recent years:
http://shuaizhang.tech/2017/07/28/Summary-of-Recommender-System-Surveys-in-recent-years/
各大公司广泛使用的在线学习算法FTRL详解:
http://www.cnblogs.com/EE-NovRain/p/3810737.html
Tensorflow - wide and deep.ipynb:
https://github.com/bartgras/XGBoost-Tensorflow-Wide-and-deep-comparison/blob/master/Tensorflow%20-%20wide%20and%20deep.ipynb
TensorFlow Wide And Deep 模型详解与应用:
http://geek.csdn.net/news/detail/235465
TensorFlow Wide And Deep 模型详解与应用(二):
http://geek.csdn.net/news/detail/235471
tensorflow线性模型以及Wide deep learning:
http://blog.csdn.net/zhangshuaizaxia/article/details/53707301
TensorFlow 广度和深度学习教程:
http://www.jianshu.com/p/7dc588d98a94
深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记:
http://www.cnblogs.com/wuxiangli/p/7258474.html
Google_Wide&Deep Learning
http://www.datakit.cn/blog/2016/08/21/wdnn.html

两天入门Google Wide and deep (模型)推荐系统的资料_第1张图片
欢迎关注人工智能见闻公众号

你可能感兴趣的:(两天入门Google Wide and deep (模型)推荐系统的资料)