多进程+多线程打造高效率爬虫

Hello 大家好!我又来了。

[
多进程+多线程打造高效率爬虫_第1张图片
QQ图片2016110221515](http://upload-images.jianshu.io/upload_images/4233558-0b75bb6320a8debb.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

你是不是发现下载图片速度特别慢、难以忍受啊!对于这种问题 一般解决办法就是多进程了!一个进程速度慢!我就用十个进程,相当于十个人一起干。速度就会快很多啦!(为什么不说多线程?懂点Python的小伙伴都知道、GIL的存在 导致Python的多线程有点坑啊!)今天就教大家来做一个多进程的爬虫(其实吧、可以用来做一个超简化版的分布式爬虫)

其实吧!还有一种加速的方法叫做“异步”!不过这玩意儿我没怎么整明白就不出来误人子弟了!(因为爬虫大部分时间都是在等待response中!‘异步’则能让程序在等待response的时间去做的其他事情。)

[
QQ图片2016102219331](http://upload-images.jianshu.io/upload_images/4233558-4fb17673cf991148.gif?imageMogr2/auto-orient/strip)
QQ图片2016102219331](http://upload-images.jianshu.io/upload_images/4233558-4fb17673cf991148.gif?imageMogr2/auto-orient/strip)

学过Python基础的同学都知道、在多进程中,进程之间是不能相互通信的,这就有一个很坑爹的问题的出现了!多个进程怎么知道那那些需要爬取、哪些已经被爬取了!

这就涉及到一个东西!这玩意儿叫做队列!!队列!!队列!!其实吧正常来说应该给大家用队列来完成这个教程的, 比如 Tornado 的queue模块。(如果需要更为稳定健壮的队列,则请考虑使用Celery这一类的专用消息传递工具)

不过为了简化技术种类啊!(才不会告诉你们是我懒,嫌麻烦呢!)这次我们继续使用MongoDB。

好了!先来理一下思路:

每个进程需要知道那些URL爬取过了、哪些URL需要爬取!我们来给每个URL设置两种状态:

outstanding:等待爬取的URL

complete:爬取完成的URL

诶!等等我们好像忘了啥? 失败的URL的怎么办啊?我们在增加一种状态:

processing:正在进行的URL。

嗯!当一个所有初始的URL状态都为outstanding;当开始爬取的时候状态改为:processing;爬取完成状态改为:complete;失败的URL重置状态为:outstanding。为了能够处理URL进程被终止的情况、我们设置一个计时参数,当超过这个值时;我们则将状态重置为outstanding。

下面开整Go Go Go!

首先我们需要一个模块:datetime(这个模块比内置time模块要好使一点)不会装??不是吧! pip install datetime

还有上一篇博文我们已经使用过的pymongo

下面是队列的代码:

from datetime import datetime, timedelta
from pymongo import MongoClient, errors

class MogoQueue():

    OUTSTANDING = 1 ##初始状态
    PROCESSING = 2 ##正在下载状态
    COMPLETE = 3 ##下载完成状态

    def __init__(self, db, collection, timeout=300):##初始mongodb连接
        self.client = MongoClient()
        self.Client = self.client[db]
        self.db = self.Client[collection]
        self.timeout = timeout

    def __bool__(self):
        """
        这个函数,我的理解是如果下面的表达为真,则整个类为真
        至于有什么用,后面我会注明的(如果我的理解有误,请指点出来谢谢,我也是Python新手)
        $ne的意思是不匹配
        """
        record = self.db.find_one(
            {'status': {'$ne': self.COMPLETE}}
        )
        return True if record else False

    def push(self, url, title): ##这个函数用来添加新的URL进队列
        try:
            self.db.insert({'_id': url, 'status': self.OUTSTANDING, '主题': title})
            print(url, '插入队列成功')
        except errors.DuplicateKeyError as e:  ##报错则代表已经存在于队列之中了
            print(url, '已经存在于队列中了')
            pass
    def push_imgurl(self, title, url):
        try:
            self.db.insert({'_id': title, 'statue': self.OUTSTANDING, 'url': url})
            print('图片地址插入成功')
        except errors.DuplicateKeyError as e:
            print('地址已经存在了')
            pass

    def pop(self):
        """
        这个函数会查询队列中的所有状态为OUTSTANDING的值,
        更改状态,(query后面是查询)(update后面是更新)
        并返回_id(就是我们的URL),MongDB好使吧,^_^
        如果没有OUTSTANDING的值则调用repair()函数重置所有超时的状态为OUTSTANDING,
        $set是设置的意思,和MySQL的set语法一个意思
        """
        record = self.db.find_and_modify(
            query={'status': self.OUTSTANDING},
            update={'$set': {'status': self.PROCESSING, 'timestamp': datetime.now()}}
        )
        if record:
            return record['_id']
        else:
            self.repair()
            raise KeyError

    def pop_title(self, url):
        record = self.db.find_one({'_id': url})
        return record['主题']

    def peek(self):
        """这个函数是取出状态为 OUTSTANDING的文档并返回_id(URL)"""
        record = self.db.find_one({'status': self.OUTSTANDING})
        if record:
            return record['_id']

    def complete(self, url):
        """这个函数是更新已完成的URL完成"""
        self.db.update({'_id': url}, {'$set': {'status': self.COMPLETE}})

    def repair(self):
        """这个函数是重置状态$lt是比较"""
        record = self.db.find_and_modify(
           query={
               'timestamp': {'$lt': datetime.now() - timedelta(seconds=self.timeout)},
               'status': {'$ne': self.COMPLETE}
           },
            update={'$set': {'status': self.OUTSTANDING}}
        )
        if record:
            print('重置URL状态', record['_id'])

    def clear(self):
        """这个函数只有第一次才调用、后续不要调用、因为这是删库啊!"""
        self.db.drop()

好了,队列我们做好了,下面是获取所有页面的代码:

from Download import request
from mongodb_queue import MogoQueue
from bs4 import BeautifulSoup


spider_queue = MogoQueue('meinvxiezhenji', 'crawl_queue')
def start(url):
    response = request.get(url, 3)
    Soup = BeautifulSoup(response.text, 'lxml')
    all_a = Soup.find('div', class_='all').find_all('a')
    for a in all_a:
        title = a.get_text()
        url = a['href']
        spider_queue.push(url, title)
    """上面这个调用就是把URL写入MongoDB的队列了"""

if __name__ == "__main__":
    start('http://www.mzitu.com/all')

"""这一段儿就不解释了哦!超级简单的"""

下面就是多进程+多线程的下载代码了:

import os
import time
import threading
import multiprocessing
from mongodb_queue import MogoQueue
from Download import request
from bs4 import BeautifulSoup

SLEEP_TIME = 1

def mzitu_crawler(max_threads=10):
    crawl_queue = MogoQueue('meinvxiezhenji', 'crawl_queue') ##这个是我们获取URL的队列
    ##img_queue = MogoQueue('meinvxiezhenji', 'img_queue')
    def pageurl_crawler():
        while True:
            try:
                url = crawl_queue.pop()
                print(url)
            except KeyError:
                print('队列没有数据')
                break
            else:
                img_urls = []
                req = request.get(url, 3).text
                title = crawl_queue.pop_title(url)
                mkdir(title)
                os.chdir('D:\mzitu\\' + title)
                max_span = BeautifulSoup(req, 'lxml').find('div', class_='pagenavi').find_all('span')[-2].get_text()
                for page in range(1, int(max_span) + 1):
                    page_url = url + '/' + str(page)
                    img_url = BeautifulSoup(request.get(page_url, 3).text, 'lxml').find('div', class_='main-image').find('img')['src']
                    img_urls.append(img_url)
                    save(img_url)
                crawl_queue.complete(url) ##设置为完成状态
                ##img_queue.push_imgurl(title, img_urls)
                ##print('插入数据库成功')

    def save(img_url):
        name = img_url[-9:-4]
        print(u'开始保存:', img_url)
        img = request.get(img_url, 3)
        f = open(name + '.jpg', 'ab')
        f.write(img.content)
        f.close()

    def mkdir(path):
        path = path.strip()
        isExists = os.path.exists(os.path.join("D:\mzitu", path))
        if not isExists:
            print(u'建了一个名字叫做', path, u'的文件夹!')
            os.makedirs(os.path.join("D:\mzitu", path))
            return True
        else:
            print(u'名字叫做', path, u'的文件夹已经存在了!')
            return False

    threads = []
    while threads or crawl_queue:
        """
        这儿crawl_queue用上了,就是我们__bool__函数的作用,为真则代表我们MongoDB队列里面还有数据
        threads 或者 crawl_queue为真都代表我们还没下载完成,程序就会继续执行
        """
        for thread in threads:
            if not thread.is_alive(): ##is_alive是判断是否为空,不是空则在队列中删掉
                threads.remove(thread)
        while len(threads) < max_threads or crawl_queue.peek(): ##线程池中的线程少于max_threads 或者 crawl_qeue时
            thread = threading.Thread(target=pageurl_crawler) ##创建线程
            thread.setDaemon(True) ##设置守护线程
            thread.start() ##启动线程
            threads.append(thread) ##添加进线程队列
        time.sleep(SLEEP_TIME)

def process_crawler():
    process = []
    num_cpus = multiprocessing.cpu_count()
    print('将会启动进程数为:', num_cpus)
    for i in range(num_cpus):
        p = multiprocessing.Process(target=mzitu_crawler) ##创建进程
        p.start() ##启动进程
        process.append(p) ##添加进进程队列
    for p in process:
        p.join() ##等待进程队列里面的进程结束

if __name__ == "__main__":
    process_crawler()

好啦!一个多进程多线的爬虫就完成了,(其实你可以设置一下MongoDB,然后调整一下连接配置,在多台机器上跑哦!!嗯,就是超级简化版的分布式爬虫了,虽然很是简陋。)

本来还想下载图片那一块儿加上异步(毕竟下载图片是I\O等待最久的时间了,),可惜异步我也没怎么整明白,就不拿出来贻笑大方了。

另外,各位小哥儿可以参考上面代码,单独处理图片地址试试(就是多个进程直接下载图片)?

我测试了一下八分钟下载100套图

[
多进程+多线程打造高效率爬虫_第2张图片
QQ图片2016110221515](http://upload-images.jianshu.io/upload_images/4233558-0b75bb6320a8debb.jpg?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

小白教程就到此结束了,后面我教大家玩玩Scrapy

你可能感兴趣的:(多进程+多线程打造高效率爬虫)