python实现HOG+SVM

该程序可以在gitHub上找到 https://github.com/yjl9122/object-detector-master.git

主函数为

#!/usr/bin/python
import os

# Link to the UIUC Car Database
# http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
# dataset_url = "http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz"
# dataset_path = "../data/dataset/CarData.tar.gz"

# Fetch and extract the dataset
# if not os.path.exists(dataset_path):
#     os.system("wget {} -O {}".format(dataset_url, dataset_path))
#     os.system("tar -xvzf {} -C {}".format(dataset_path, os.path.split(dataset_path)[0]))

# Extract the features
pos_path = "../data/dataset/CarData/pos"
neg_path = "../data/dataset/CarData/neg"
os.system("python ../object-detector/extract-features.py -p {} -n {}".format(pos_path, neg_path))

# Perform training
pos_feat_path =  "../data/features/pos"
neg_feat_path =  "../data/features/neg"
os.system("python ../object-detector/train-classifier.py -p {} -n {}".format(pos_feat_path, neg_feat_path))

# Perform testing 
test_im_path = "../data/dataset/CarData/TestImages/test-18.pgm"
os.system("python ../object-detector/test-classifier.py -i {} -d {} --visualize".format(test_im_path,2))

参数为

[hog]
min_wdw_sz: [100, 40]
step_size: [10, 10]
orientations: 9
pixels_per_cell: [5, 5]
cells_per_block: [3, 3]
visualize: False
transform_sqrt:True
visualize_test: True

[nms]
threshold: 0.3

[paths]
pos_feat_ph: ../data/features/pos
neg_feat_ph: ../data/features/neg
model_path: ../data/models/svm.model

读取参数config

'''
Set the config variable.
'''

import ConfigParser as cp
import json

config = cp.RawConfigParser()
config.read('../data/config/config.cfg')

min_wdw_sz = tuple(json.loads(config.get("hog","min_wdw_sz")))
step_size = tuple(json.loads(config.get("hog", "step_size")))
orientations = config.getint("hog", "orientations")
pixels_per_cell = json.loads(config.get("hog", "pixels_per_cell"))
cells_per_block = json.loads(config.get("hog", "cells_per_block"))
visualize = config.getboolean("hog", "visualize")
visualize_test = config.getboolean("hog","visualize_test")
transform_sqrt = config.getboolean("hog", "transform_sqrt")
pos_feat_ph = config.get("paths", "pos_feat_ph")
neg_feat_ph = config.get("paths", "neg_feat_ph")
model_path = config.get("paths", "model_path")
threshold = config.getfloat("nms", "threshold")

HOG特征提取,在这里实现的步骤有些繁琐,可以实现的时候将HOG和SVM写在一起

# Import the functions to calculate feature descriptors
from skimage.feature import local_binary_pattern
from skimage.feature import hog
from skimage.io import imread
from sklearn.externals import joblib
# To read file names
import argparse as ap
import glob
import os
from config import *

if __name__ == "__main__":
    # Argument Parser
    parser = ap.ArgumentParser()
    parser.add_argument('-p', "--pospath", help="Path to positive images",
            required=True)
    parser.add_argument('-n', "--negpath", help="Path to negative images",
            required=True)
    parser.add_argument('-d', "--descriptor", help="Descriptor to be used -- HOG",
            default="HOG")
    args = vars(parser.parse_args())

    pos_im_path = args["pospath"]
    neg_im_path = args["negpath"]
    
    des_type = args["descriptor"]

    # If feature directories don't exist, create them
    if not os.path.isdir(pos_feat_ph):
        os.makedirs(pos_feat_ph)

    # If feature directories don't exist, create them
    if not os.path.isdir(neg_feat_ph):
        os.makedirs(neg_feat_ph)

    print "Calculating the descriptors for the positive samples and saving them"
    for im_path in glob.glob(os.path.join(pos_im_path, "*")):
        im = imread(im_path, as_grey=True)
        if des_type == "HOG":
            fd = hog(im, orientations, pixels_per_cell, cells_per_block, visualise=visualize,transform_sqrt=transform_sqrt)
        fd_name = os.path.split(im_path)[1].split(".")[0] + ".feat"
        fd_path = os.path.join(pos_feat_ph, fd_name)
        joblib.dump(fd, fd_path)
    print "Positive features saved in {}".format(pos_feat_ph)

    print "Calculating the descriptors for the negative samples and saving them"
    for im_path in glob.glob(os.path.join(neg_im_path, "*")):
        im = imread(im_path, as_grey=True)
        if des_type == "HOG":
            fd = hog(im,  orientations, pixels_per_cell, cells_per_block, visualise=visualize,transform_sqrt=transform_sqrt)
        fd_name = os.path.split(im_path)[1].split(".")[0] + ".feat"
        fd_path = os.path.join(neg_feat_ph, fd_name)
        joblib.dump(fd, fd_path)
    print "Negative features saved in {}".format(neg_feat_ph)

    print "Completed calculating features from training images"

SVM训练

# Import the required modules
from skimage.feature import local_binary_pattern
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
import argparse as ap
import glob
import os
from config import *

if __name__ == "__main__":
    # Parse the command line arguments
    parser = ap.ArgumentParser()
    parser.add_argument('-p', "--posfeat", help="Path to the positive features directory", required=True)
    parser.add_argument('-n', "--negfeat", help="Path to the negative features directory", required=True)
    parser.add_argument('-c', "--classifier", help="Classifier to be used", default="LIN_SVM")
    args = vars(parser.parse_args())

    pos_feat_path =  args["posfeat"]
    neg_feat_path = args["negfeat"]

    # Classifiers supported
    clf_type = args['classifier']

    fds = []
    labels = []
    # Load the positive features
    for feat_path in glob.glob(os.path.join(pos_feat_path,"*.feat")):
        fd = joblib.load(feat_path)
        fds.append(fd)
        labels.append(1)

    # Load the negative features
    for feat_path in glob.glob(os.path.join(neg_feat_path,"*.feat")):
        fd = joblib.load(feat_path)
        fds.append(fd)
        labels.append(0)

    if clf_type is "LIN_SVM":
        clf = LinearSVC()
        print "Training a Linear SVM Classifier"
        clf.fit(fds, labels)
        # If feature directories don't exist, create them
        if not os.path.isdir(os.path.split(model_path)[0]):
            os.makedirs(os.path.split(model_path)[0])
        joblib.dump(clf, model_path)
        print "Classifier saved to {}".format(model_path)

至此HOG和SVM的训练部分完成了,生成了SVM.modle

HOG+SVM测试部分

# Import the required modules
from skimage.transform import pyramid_gaussian
from skimage.io import imread
from skimage.feature import hog
from sklearn.externals import joblib
import cv2
import argparse as ap
from nms import nms
from config import *

def sliding_window(image, window_size, step_size):
    '''
    This function returns a patch of the input image `image` of size equal
    to `window_size`. The first image returned top-left co-ordinates (0, 0) 
    and are increment in both x and y directions by the `step_size` supplied.
    So, the input parameters are -
    * `image` - Input Image
    * `window_size` - Size of Sliding Window
    * `step_size` - Incremented Size of Window

    The function returns a tuple -
    (x, y, im_window)
    where
    * x is the top-left x co-ordinate
    * y is the top-left y co-ordinate
    * im_window is the sliding window image
    '''
    for y in xrange(0, image.shape[0], step_size[1]):
        for x in xrange(0, image.shape[1], step_size[0]):
            yield (x, y, image[y:y + window_size[1], x:x + window_size[0]])

if __name__ == "__main__":
    # Parse the command line arguments
    parser = ap.ArgumentParser()
    parser.add_argument('-i', "--image", help="Path to the test image", required=True)
    parser.add_argument('-d','--downscale', help="Downscale ratio", default=1.25,
            type=int)
    parser.add_argument('-v', '--visualize', help="Visualize the sliding window",
            action="store_true")
    args = vars(parser.parse_args())

    # Read the image
    im = imread(args["image"], as_grey=False)
    # min_wdw_sz = (100, 40)
    # step_size = (10, 10)
    downscale = args['downscale']
    visualize_det = args['visualize']

    # Load the classifier
    clf = joblib.load(model_path)

    # List to store the detections
    detections = []
    # The current scale of the image
    scale = 0
    # Downscale the image and iterate
    for im_scaled in pyramid_gaussian(im, downscale=downscale):
        # This list contains detections at the current scale
        cd = []
        # If the width or height of the scaled image is less than
        # the width or height of the window, then end the iterations.
        if im_scaled.shape[0] < min_wdw_sz[1] or im_scaled.shape[1] < min_wdw_sz[0]:
            break
        for (x, y, im_window) in sliding_window(im_scaled, min_wdw_sz, step_size):
            if im_window.shape[0] != min_wdw_sz[1] or im_window.shape[1] != min_wdw_sz[0]:
                continue
            # Calculate the HOG features
            if visualize_test==False:
                fd = hog(im_window, orientations, pixels_per_cell, cells_per_block, visualise=visualize_test, transform_sqrt=transform_sqrt)
            elif visualize_test==True:
                fd ,hog_image= hog(im_window, orientations, pixels_per_cell, cells_per_block, visualise=visualize_test, transform_sqrt=transform_sqrt)
                cv2.imshow('hog_image',hog_image)
                cv2.waitKey(0)
            pred = clf.predict(fd)
            if pred == 1:
                print  "Detection:: Location -> ({}, {})".format(x, y)
                print "Scale ->  {} | Confidence Score {} \n".format(scale,clf.decision_function(fd))
                detections.append((x, y, clf.decision_function(fd),
                    int(min_wdw_sz[0]*(downscale**scale)),
                    int(min_wdw_sz[1]*(downscale**scale))))
                cd.append(detections[-1])
            # If visualize is set to true, display the working
            # of the sliding window
            if visualize_det:
                clone = im_scaled.copy()
                for x1, y1, _, _, _  in cd:
                    # Draw the detections at this scale
                    cv2.rectangle(clone, (x1, y1), (x1 + im_window.shape[1], y1 +
                        im_window.shape[0]), (0, 0, 0), thickness=2)
                cv2.rectangle(clone, (x, y), (x + im_window.shape[1], y +
                    im_window.shape[0]), (255, 255, 255), thickness=2)
                cv2.imshow("Sliding Window in Progress", clone)
                cv2.waitKey(30)
        # Move the the next scale
        scale+=1

    # Display the results before performing NMS
    clone = im.copy()
    for (x_tl, y_tl, _, w, h) in detections:
        # Draw the detections
        cv2.rectangle(im, (x_tl, y_tl), (x_tl+w, y_tl+h), (0, 0, 0), thickness=2)
    cv2.imshow("Raw Detections before NMS", im)
    cv2.waitKey()

    # Perform Non Maxima Suppression
    detections = nms(detections, threshold)

    # Display the results after performing NMS
    for (x_tl, y_tl, _, w, h) in detections:
        # Draw the detections
        cv2.rectangle(clone, (x_tl, y_tl), (x_tl+w,y_tl+h), (0, 0, 0), thickness=2)
    cv2.imshow("Final Detections after applying NMS", clone)
    cv2.waitKey()

其中检测出的矩形框会很多,于是对其使用非极大抑制

def overlapping_area(detection_1, detection_2):
    '''
    Function to calculate overlapping area'si
    `detection_1` and `detection_2` are 2 detections whose area
    of overlap needs to be found out.
    Each detection is list in the format ->
    [x-top-left, y-top-left, confidence-of-detections, width-of-detection, height-of-detection]
    The function returns a value between 0 and 1,
    which represents the area of overlap.
    0 is no overlap and 1 is complete overlap.
    Area calculated from ->
    http://math.stackexchange.com/questions/99565/simplest-way-to-calculate-the-intersect-area-of-two-rectangles
    '''
    # Calculate the x-y co-ordinates of the 
    # rectangles
    x1_tl = detection_1[0]
    x2_tl = detection_2[0]
    x1_br = detection_1[0] + detection_1[3]
    x2_br = detection_2[0] + detection_2[3]
    y1_tl = detection_1[1]
    y2_tl = detection_2[1]
    y1_br = detection_1[1] + detection_1[4]
    y2_br = detection_2[1] + detection_2[4]
    # Calculate the overlapping Area
    x_overlap = max(0, min(x1_br, x2_br)-max(x1_tl, x2_tl))
    y_overlap = max(0, min(y1_br, y2_br)-max(y1_tl, y2_tl))
    overlap_area = x_overlap * y_overlap
    area_1 = detection_1[3] * detection_2[4]
    area_2 = detection_2[3] * detection_2[4]
    total_area = area_1 + area_2 - overlap_area
    return overlap_area / float(total_area)

def nms(detections, threshold=.5):
    '''
    This function performs Non-Maxima Suppression.
    `detections` consists of a list of detections.
    Each detection is in the format ->
    [x-top-left, y-top-left, confidence-of-detections, width-of-detection, height-of-detection]
    If the area of overlap is greater than the `threshold`,
    the area with the lower confidence score is removed.
    The output is a list of detections.
    '''
    if len(detections) == 0:
    return []
    # Sort the detections based on confidence score
    detections = sorted(detections, key=lambda detections: detections[2],
            reverse=True)
    # Unique detections will be appended to this list
    new_detections=[]
    # Append the first detection
    new_detections.append(detections[0])
    # Remove the detection from the original list
    del detections[0]
    # For each detection, calculate the overlapping area
    # and if area of overlap is less than the threshold set
    # for the detections in `new_detections`, append the 
    # detection to `new_detections`.
    # In either case, remove the detection from `detections` list.
    for index, detection in enumerate(detections):
        for new_detection in new_detections:
            if overlapping_area(detection, new_detection) > threshold:
                del detections[index]
                break
        else:
            new_detections.append(detection)
            del detections[index]
    return new_detections

if __name__ == "__main__":
    # Example of how to use the NMS Module
    detections = [[31, 31, .9, 10, 10], [31, 31, .12, 10, 10], [100, 34, .8,10, 10]]
    print "Detections before NMS = {}".format(detections)
    print "Detections after NMS = {}".format(nms(detections))



你可能感兴趣的:(python实现HOG+SVM)