堆米-《量化交易,如何建立自己的算法交易事业》

本文为读书笔记和思考。

堆米-《量化交易,如何建立自己的算法交易事业》_第1张图片
  1. 一些交易理念的来源
堆米-《量化交易,如何建立自己的算法交易事业》_第2张图片
7.pic.jpg
  1. 通过哪些指标来衡量策略

信息比率:超额收益率的均值/超额收益率的标准差
评价一个多头策略时所用的指标。

夏普比率:信息比率的特殊模式

夏普比率越高越好。因为它让你可以用更高的杠杆获取更高的利润。

如果一个策略年交易次数不多,那么夏普比率不可能大;如果一个策略回撤很大,或者回撤时间很长,也不可能有很大夏普比率。

任何夏普比率低于1的策略都不适宜单独使用。几乎每个月都盈利的策略,其夏普比率一般大于2;几乎每天都盈利的策略,其夏普比率一般大于3.

回撤:有最大回撤,和回撤最长时间

3.哪些因素影响策略收益

a. 数据无存活偏差
b. 交易成本
c. 随时间变化:存活偏差,状态改变,大环境改变,政策改变等,都会导致策略在不同时期表现不一样。。当考虑一项策略的适应性时,不应该考虑过长的时间,而要考虑近期的表现。
d. 过渡拟合

  1. 避免常见的回测陷阱

a. 未来信息:比如“选择当日最低价成交”,在收盘之前,是不知道最低价的。
b. 数据过拟合
如何降低数据过渡拟合的问题:
* 按照要优化的自由参数的个数,使用足够多的样本进行回测
* 分训练集和测试集,取两个都能取得好结果的参数
* 敏感性分析
c. 存活偏差

5.策略改进

a. 要同时提高训练集和测试集的表现
b. 最好基于经济学基本原理,而不是数据试错。否则容易导致过度拟合

6.资金和风险管理
任何策略都有可能遭遇回撤亏损。如何建立合适的头寸,如何把头寸分布在不同策略上,有助于降低风险。
追求最大收益,就是追求长期复合收益率最高。
Edward Thorp 博士的证券资产管理讨论有助于我们的策略组合讨论。

以下信息来自维基百科。

爱德华·奥克利·索普(英语:Edward Oakley Thorp,1932年8月14日-),昵称爱德·索普(Ed Thorp),生于美国伊利诺伊州芝加哥市,为数学教授、作家、对冲基金管理者、以及廿一点玩家。他深入发展了现代的概率论,并应用于金融市场中。
生平
1958年,于洛杉矶加利福尼亚大学取得数学博士学位。1959年至1961年间,于麻省理工学院担任摩尔讲座教授。在这个期间内,利用IBM 704,爱德华·索普写作Fortran程式,将凯利公式应用于廿一点游戏中。
在麻省理工学院期间,认识克劳德·香农,两人共同研究以凯利公式应用在轮盘赌博上。在1961年,两人制造出一台小型计算机,用来计算概率。爱德华·索普穿戴着这套机器,至拉斯维加斯赌场,进行赌博,以验证他们的公式是否正确。这可能是史上最早的可穿戴式电脑。
1961年至1965年,爱德华·索普至新墨西哥州立大学数学系任教。1965年,转至加州大学尔湾分校数学系任教,1977年至1982年间,在财经系任教。
1967年,与证券经纪人杰伊·里根(Jay Regan)合组对冲基金。公司最早称为可转换对冲(Convertible Hedge Associates)公司,1974年改名普林斯顿-新港合伙(Princeton-Newport Partners)公司。
1987年12月17日,因离职员工向FBI检举杰伊·里根涉嫌伪造假交易逃漏税,普林斯顿-新港合伙公司遭到检察官起诉。1989年宣布结束营业。
爱德华·索普之后又开立自己的公司,名为爱德华·索普(Edward Thorp Associates)资产管理公司,以独资方式进行投资。

堆米-《量化交易,如何建立自己的算法交易事业》_第3张图片
1.pic.jpg

列向量F就是我们要求的仓位比例。
凯利公式求出来的fi 就是 最有杆杠。

由于参数一般都有误差,收益率的分布也不是标准的正态分布,为了避免过大风险,大家也会使用半凯利仓位。

使用凯利公式推导,得到最大复合收益 :** g = r + s^2/2**
其中s为sharpe率。所以夏普率越高,杠杆收益率越高。

举个例子:

  • 策略A 平均收益率 = 10%,收益率标准差为16%
  • 策略B 平均收益率 = 12%,收益率标准差为15%
  • 策略C平均收益率 = 15%,标准差为20%

则各部分的杠杆:
A f = m/s^2 = 10%/ 16%^2 = 10%/2.56% = 3.9
B f = 12%/2.25% = 5.3
C f = 15%/4% = 3.75

则得到仓位为:
t_A = 3.9/(3.9+5.3+3.75) = 30%, t_B = 41%, t_C = 29%

看似收益最高的策略C,其实可利用的杠杆最低,导致最终的投资占比也最低。

7.止损只有在趋势形态时才是正确的:股票一直在下跌趋势,这个时候止损能够降低损失。如果实在均值回归形态,止损反而会失去机会。不要过快地止损,等待均值回归反而是正确的。

  1. 均值回归和惯性策略

8.1 惯性策略:一般来源于:重要性喜的逐级扩散;大订单的分拆执行;羊群效应。

8.2 相同策略的竞争将导致什么结果?均值回归策略:策略套利机会逐步消失;惯性策略:惯性时间越来越短。

9.马尔科夫状态转换模型

9.1 假设价格在两个或多个状态上分布的概率不同,一般情况下是假设为不同的正态分布,均值和方差不同
9.2 假设两种状态之间存在某种转化概率
9.3 通过诸如最大似然率这样的统计方法,来估算状态分布以及转移概率的参数。
9.4 根据上述参数模型,估计下一个补偿的期望状态,更重要的是,找到期望价格。

10.拐点模型:输入所有可能改变状态的变量。比如当前波动率,最近收益率,消费者信心指数,石油价格变化,债券价格变化等宏观数据变化等。文章指出,当媒体上开始频繁地讨论繁荣或者衰落的时候,就是下一个拐点到来的时候。

11.平稳性和协整性
大多数股票的价格序列都不是平稳的,通常表现为几何随机游走 ,不断离初始点越来越远。尽管如此,你能找到像买入一只股票,卖出一只股票这样的股票配对,配对的市场价值是平稳的。这种情况下,两个独立的时间序列被称为协整。
这是一种常见的交易策略,在配对的差价低的时候买入配对组合,在价差高的时候卖出(卖空)配对。

12.因子模型,或者套利定价理论,常用于模拟基本面因素对股票收益率的线性影响。
13.最著名的因子模型之一是Fama-French三因子模型,它假设股票收益率与贝塔值和账面市值比率正相关,与市值负相关。
14.因子模型会因为状态转换而有一个较长的持有期和回撤期。均值回归策略和趋势策略的清仓信号不同
15.均值回归策略的最佳持有期由Ornstein-Uhlenbeck公式而比较可靠。
16.惯性策略的最佳持有期容易因为参数较少而出错
17.止损适用于惯性趋势策略,而非均值回归策略。
18.根据大数定律,高频交易策略有较高的夏普率而复合收益率较高。
19.高杠杆低贝塔值的组合,比低杠杆高贝塔值的组合,有更高的符合收益率。

你可能感兴趣的:(堆米-《量化交易,如何建立自己的算法交易事业》)