电池面试 - Literature review

  1. 电池面试 - Literature review_第1张图片
    image.png

key words:

terminal voltage 外接电压
capacitance 电容
resistance 电阻
electrolyte 电解质
electrice current 电流
solid-electrolyte interphase 固体电解质

Strong influences on terminal voltage

  1. Temperature
  2. SOC
  3. Precondition
  4. Age (calendric/ cyclic)
  5. HAVC Usage (Heating, ventilation, aircondition)
  6. DOD, depth of charge

historical data, road profile (urban, intercity),
traffic congestion level, driver behaviour (i.e. aggressiveness),
environmental conditions (i.e. weather conditions), dynamic
vehicle parameters (i.e. SOC, SOH) and accessory loads (i.e. heating,
cooling

Many different cell
NMC\LFP\LTO

NN/ stochastic model/ Fuzzy-Logic

Pro: Little Knowledge about BMS, computational performance
Con: non-explainable, not for all batteries/ comprehensive measurement

Modeling approach

pro: computational performance, sufficient precisions, partly physical meaning
con: leaner model (U and I )

1. H.A. Yavasoglu

ML Predict Driving Range

  • DT for road type
  • ANN for range estimation (Use ann because the update ability)
电池面试 - Literature review_第2张图片
image.png

conventional multiple linear regression method
gradient boosting decision tree algorithm

  • residual usable energy (RUE)

SOC(state of charge) , SOH (state of health), temperature,
future discharge voltage
capacity values

image.png

Implementation of machine learning-based real-time range estimation method without destination knowledge for BEVs

phrase exp
Range Anxiety 里程焦虑
velocity speed
jerk change of acceleration

2. Compare different algorithms Delnevo*

电池面试 - Literature review_第3张图片
image.png

3 State-of-Charge Estimation Methods for Li-ion Batteries in Electric Vehicles

电池面试 - Literature review_第4张图片
image.png

To estimate SOC, there are three methods

All about the SOC

电池面试 - Literature review_第5张图片
image.png
电池面试 - Literature review_第6张图片
image.png

你可能感兴趣的:(电池面试 - Literature review)