概念

  二叉树

  要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

  二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。

  树和二叉树的三个主要差别:

  树的结点个数至少为 1,而二叉树的结点个数可以为 0

  树中结点的最大度数没有限制,而二叉树结点的最大度数为 2

  树的结点无左、右之分,而二叉树的结点有左、右之分

  二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)

  如图:

  

Java SDK中的排序算法-单轴快排_第1张图片


  满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树

  完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

  

Java SDK中的排序算法-单轴快排_第2张图片


  堆

  堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

  如下图,是一个堆和数组的相互关系

  

Java SDK中的排序算法-单轴快排_第3张图片


  二叉堆一般分为两种:最大堆和最小堆。

  最大堆:

  最大堆中的最大元素值出现在根结点(堆顶)

  堆中每个父节点的元素值都大于等于其孩子结点(如果存在)

  

Java SDK中的排序算法-单轴快排_第4张图片


  最小堆:

  最小堆中的最小元素值出现在根结点(堆顶)

  堆中每个父节点的元素值都小于等于其孩子结点(如果存在)

  

Java SDK中的排序算法-单轴快排_第5张图片


  原理

  最大堆调整(Max_Heapify):从堆的倒数第一个非叶子节点作调整,使得子节点永远小于父节点。没有必要从叶子节点开始,叶子节点可以看作是已符合堆特点的节点。

  创建最大堆(Build_Max_Heap):将堆所有数据重新排序

  堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整。

  图解:列如我们有原始数字[2 10 9 5 6 1]

  下面我们用堆排序排序

  原始为:

  

Java SDK中的排序算法-单轴快排_第6张图片

)


  第一次:

  

Java SDK中的排序算法-单轴快排_第7张图片


  第二次

  

Java SDK中的排序算法-单轴快排_第8张图片


  我们得到了

  

Java SDK中的排序算法-单轴快排_第9张图片


  代码实现:

Java SDK中的排序算法-单轴快排_第10张图片

Java SDK中的排序算法-单轴快排_第11张图片