滑动验证码

我们可以借助插件来做
打开插件,找到自己需要的验证码
筛选有用的路径
把对应的视图函数也拿过来,注意还需要一个geetest.py的文件

具体实
urls
#滑动验证码
     url(r'^pc-geetest/register', pcgetcaptcha, name='pcgetcaptcha'),
     url(r'^pc-geetest/ajax_validate', pcajax_validate, name='pcajax_validate'),
views
from app01.geetest import GeetestLib
pc_geetest_id = "b46d1900d0a894591916ea94ea91bd2c"
pc_geetest_key = "36fc3fe98530eea08dfc6ce76e3d24c4"
mobile_geetest_id = "7c25da6fe21944cfe507d2f9876775a9"
mobile_geetest_key = "f5883f4ee3bd4fa8caec67941de1b903"
# 滑动验证码
def pcgetcaptcha(request):
    user_id = 'test'
    gt = GeetestLib(pc_geetest_id, pc_geetest_key)
    status = gt.pre_process(user_id)
    request.session[gt.GT_STATUS_SESSION_KEY] = status
    request.session["user_id"] = user_id
    response_str = gt.get_response_str()
    return HttpResponse(response_str)
# 滑动验证码
def pcajax_validate(request):

    if request.method == "POST":
        # 验证的验证码
        ret = {"flag": False, "error_msg": None}
        gt = GeetestLib(pc_geetest_id, pc_geetest_key)
        challenge = request.POST.get(gt.FN_CHALLENGE, '')
        validate = request.POST.get(gt.FN_VALIDATE, '')
        seccode = request.POST.get(gt.FN_SECCODE, '')
        status = request.session[gt.GT_STATUS_SESSION_KEY]
        user_id = request.session["user_id"]
        print("status",status)
        if status:
            result = gt.success_validate(challenge, validate, seccode, user_id)
        else:
            result = gt.failback_validate(challenge, validate, seccode)
        if result:  #如果验证验证码正确,就验证用户名是否正确
            username = request.POST.get("username")
            password = request.POST.get("password")

           # 验证用户名和密码
            user = auth.authenticate(username=username, password=password)
            if user:
                # 如果验证成功就让登录
                ret["flag"] = True
                auth.login(request, user)
            else:
                ret["error_msg"] = "用户名和密码错误"
        else:
            ret["error_msg"] = "验证码错误"
        return HttpResponse(json.dumps(ret))
    else:
        return render(request, "login.html")

views
login.html



    
    
    
    Title
    
    
    
   滑动验证码的时候导入
    
    
    



{% csrf_token %}
{# 文字部分#}
{# 图片部分#}
{# #}

{#滑动验证码#} login.html

爬虫

破解极验滑动验证码

一些网站会在正常运行的正常的账号密码认证之外加上一些验证
码,以此来明确地区分人行为,从一定程度上达到反爬的效果,对于简单的验证码tesserocr就可以搞定如下


图片.png

但一些网站加入了滑动验证码,


滑动验证码_第1张图片
图片.png

对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会特别的麻烦我们可以用selenium驱动浏览器来解决这个问题,大致分为
#1、输入账号、密码,然后点击登陆
#2、点击按钮,弹出没有缺口的图
#3、针对没有缺口的图片进行截图
#4、点击滑动按钮,弹出有缺口的图
#5、针对有缺口的图片进行截图
#6、对比两张图片,找出缺口,即滑动的位移
#7、按照人的行为行为习惯,把总位移切成一段段小的位移
#8、按照位移移动
#9、完成登录

实现

安装:selenium+chrome/phantomjs

#安装:Pillow
Pillow:基于PIL,处理python 3.x的图形图像库.因为PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它做图形的很多.
http://www.cnblogs.com/apexchu/p/4231041.html

C:\Users\Administrator>pip3 install pillow
C:\Users\Administrator>python3
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from PIL import Image
>>>

view.code

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap():
    '''
    对整个网页截图,保存成图片,然后用PIL.Image拿到图片对象
    :return: 图片对象
    '''
    driver.save_screenshot('snap.png')
    page_snap_obj=Image.open('snap.png')
    return page_snap_obj

def get_image():
    '''
    从网页的网站截图中,截取验证码图片
    :return: 验证码图片
    '''
    img=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_canvas_img')))
    time.sleep(2) #保证图片刷新出来
    localtion=img.location
    size=img.size

    top=localtion['y']
    bottom=localtion['y']+size['height']
    left=localtion['x']
    right=localtion['x']+size['width']

    page_snap_obj=get_snap()
    crop_imag_obj=page_snap_obj.crop((left,top,right,bottom))
    return crop_imag_obj


def get_distance(image1,image2):
    '''
    拿到滑动验证码需要移动的距离
    :param image1:没有缺口的图片对象
    :param image2:带缺口的图片对象
    :return:需要移动的距离
    '''
    threshold=60
    left=57
    for i in range(left,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            if not (res1 < threshold and res2 < threshold and res3 < threshold):
                return i-7 #经过测试,误差为大概为7
    return i-7 #经过测试,误差为大概为7


def get_tracks(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+½at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.3秒移动的距离
    '''
    #初速度
    v=0
    #单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.3
    #位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    #当前的位移
    current=0
    #到达mid值开始减速
    mid=distance*4/5

    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a= 2
        else:
            a=-3

        #初速度
        v0=v
        #0.2秒时间内的位移
        s=v0*t+0.5*a*(t**2)
        #当前的位置
        current+=s
        #添加到轨迹列表
        tracks.append(round(s))

        #速度已经达到v,该速度作为下次的初速度
        v=v0+a*t
    return tracks


try:
    driver=webdriver.Chrome()
    driver.get('https://account.geetest.com/login')
    wait=WebDriverWait(driver,10)

    #步骤一:先点击按钮,弹出没有缺口的图片
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_radar_tip')))
    button.click()

    #步骤二:拿到没有缺口的图片
    image1=get_image()

    #步骤三:点击拖动按钮,弹出有缺口的图片
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    button.click()

    #步骤四:拿到有缺口的图片
    image2=get_image()

    # print(image1,image1.size)
    # print(image2,image2.size)

    #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    distance=get_distance(image1,image2)

    #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
    tracks=get_tracks(distance)
    print(tracks)
    print(image1.size)
    print(distance,sum(tracks))


    #步骤七:按照轨迹拖动,完全验证
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    ActionChains(driver).click_and_hold(button).perform()
    for track in tracks:
        ActionChains(driver).move_by_offset(xoffset=track,yoffset=0).perform()
    else:
        ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() #先移过一点
        ActionChains(driver).move_by_offset(xoffset=-3,yoffset=0).perform() #再退回来,是不是更像人了

    time.sleep(0.5) #0.5秒后释放鼠标
    ActionChains(driver).release().perform()


    #步骤八:完成登录
    input_email=driver.find_element_by_id('email')
    input_password=driver.find_element_by_id('password')
    button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'login-btn')))

    input_email.send_keys('[email protected]')
    input_password.send_keys('linhaifeng123')
    # button.send_keys(Keys.ENTER)
    button.click()

    import time
    time.sleep(200)
finally:
    driver.close()

案列:

破解博客园后台登录

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap():
    driver.save_screenshot('full_snap.png')
    page_snap_obj=Image.open('full_snap.png')
    return page_snap_obj

def get_image():
    img=driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location=img.location
    size=img.size

    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']

    page_snap_obj=get_snap()
    image_obj=page_snap_obj.crop((left,top,right,bottom))
    # image_obj.show()
    return image_obj

def get_distance(image1,image2):
    start=57
    threhold=60

    for i in range(start,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                return i-7
    return i-7

def get_tracks(distance):
    distance+=20 #先滑过一点,最后再反着滑动回来
    v=0
    t=0.2
    forward_tracks=[]

    current=0
    mid=distance*3/5
    while current < distance:
        if current < mid:
            a=2
        else:
            a=-3

        s=v*t+0.5*a*(t**2)
        v=v+a*t
        current+=s
        forward_tracks.append(round(s))

    #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}

try:
    # 1、输入账号密码回车
    driver = webdriver.Chrome()
    driver.implicitly_wait(3)
    driver.get('https://passport.cnblogs.com/user/signin')

    username = driver.find_element_by_id('input1')
    pwd = driver.find_element_by_id('input2')
    signin = driver.find_element_by_id('signin')

    username.send_keys('linhaifeng')
    pwd.send_keys('xxxxx')
    signin.click()

    # 2、点击按钮,得到没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip')
    button.click()

    # 3、获取没有缺口的图片
    image1 = get_image()

    # 4、点击滑动按钮,得到有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 5、获取有缺口的图片
    image2 = get_image()

    # 6、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2)

    # 7、模拟人的行为习惯,根据总位移得到行为轨迹
    tracks = get_tracks(distance)
    print(tracks)

    # 8、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()

    # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()

    # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    time.sleep(0.5)
    ActionChains(driver).release().perform()

    time.sleep(10)  # 睡时间长一点,确定登录成功
finally:
    driver.close()

修订版本

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap(driver):
    driver.save_screenshot('full_snap.png')
    page_snap_obj=Image.open('full_snap.png')
    return page_snap_obj

def get_image(driver):
    img=driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location=img.location
    size=img.size

    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']

    page_snap_obj=get_snap(driver)
    image_obj=page_snap_obj.crop((left,top,right,bottom))
    # image_obj.show()
    return image_obj

def get_distance(image1,image2):
    start=57
    threhold=60

    for i in range(start,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                return i-7
    return i-7

def get_tracks(distance):
    distance+=20 #先滑过一点,最后再反着滑动回来
    v=0
    t=0.2
    forward_tracks=[]

    current=0
    mid=distance*3/5
    while current < distance:
        if current < mid:
            a=2
        else:
            a=-3

        s=v*t+0.5*a*(t**2)
        v=v+a*t
        current+=s
        forward_tracks.append(round(s))

    #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}

def crack(driver): #破解滑动认证
    # 1、点击按钮,得到没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip')
    button.click()

    # 2、获取没有缺口的图片
    image1 = get_image(driver)

    # 3、点击滑动按钮,得到有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 4、获取有缺口的图片
    image2 = get_image(driver)

    # 5、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2)

    # 6、模拟人的行为习惯,根据总位移得到行为轨迹
    tracks = get_tracks(distance)
    print(tracks)

    # 7、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()

    # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()

    # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    time.sleep(0.5)
    ActionChains(driver).release().perform()

def login_cnblogs(username,password):
    driver = webdriver.Chrome()
    try:
        # 1、输入账号密码回车
        driver.implicitly_wait(3)
        driver.get('https://passport.cnblogs.com/user/signin')

        input_username = driver.find_element_by_id('input1')
        input_pwd = driver.find_element_by_id('input2')
        signin = driver.find_element_by_id('signin')

        input_username.send_keys(username)
        input_pwd.send_keys(password)
        signin.click()

        # 2、破解滑动认证
        crack(driver)

        time.sleep(10)  # 睡时间长一点,确定登录成功
    finally:
        driver.close()

if __name__ == '__main__':
    login_cnblogs(username='linhaifeng',password='xxxx')

你可能感兴趣的:(滑动验证码)