Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】

一.分区策略

  Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第1张图片

  GraphX采用顶点分割的方式进行分布式图分区。GraphX不会沿着边划分图形,而是沿着顶点划分图形,这可以减少通信和存储的开销。从逻辑上讲,这对应于为机器分配边并允许顶点跨越多台机器。分配边的方法取决于分区策略PartitionStrategy并且对各种启发式方法进行了一些折中。用户可以使用Graph.partitionBy运算符重新划分图【可以使用不同分区策略】。默认的分区策略是使用图形构造中提供的边的初始分区。但是,用户可以轻松切换到GraphX中包含的2D分区或其他启发式方法。

  Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第2张图片

  一旦对边进行了划分,高效图并行计算的关键挑战就是将顶点属性和边有效结合。由于现实世界中的图通常具有比顶点更多的边,因此我们将顶点属性移到边上。由于并非所有分区都包含与所有顶点相邻的边,因此我们在内部维护一个路由表,该路由表在实现诸如triplets操作所需要的连接时,标示在哪里广播顶点aggregateMessages。

二.测试数据

  1.users.txt

    Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第3张图片

  2.followers.txt

    

  3.数据可视化

    Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第4张图片

三.PageRank网页排名

  1.简介

    使用PageRank测量图中每个顶点的重要性,假设从边u到v表示的认可度x。例如,如果一个Twitter用户被许多其他用户关注,则该用户将获得很高的排名。GraphX带有PageRank的静态和动态实现,作为PageRank对象上的方法。静态PageRant运行固定的迭代次数,而动态PageRank运行直到排名收敛【变化小于指定的阈值】。GraphOps运行直接方法调用这些算法。

  2.代码实现

 1 package graphx
 2 
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.graphx.GraphLoader
 5 import org.apache.spark.sql.SparkSession
 6 
 7 /**
 8   * Created by Administrator on 2019/11/27.
 9   */
10 object PageRank {
11   Logger.getLogger("org").setLevel(Level.WARN)
12   def main(args: Array[String]) {
13     val spark = SparkSession.builder()
14         .master("local[2]")
15         .appName(s"${this.getClass.getSimpleName}")
16         .getOrCreate()
17       val sc = spark.sparkContext
18     val graph = GraphLoader.edgeListFile(sc, "D:\\software\\spark-2.4.4\\data\\graphx\\followers.txt")
19     // 调用PageRank图计算算法
20     val ranks = graph.pageRank(0.0001).vertices
21     // join
22     val users = sc.textFile("D:\\software\\spark-2.4.4\\data\\graphx\\users.txt").map(line => {
23       val fields = line.split(",")
24       (fields(0).toLong, fields(1))
25     })
26     // join
27     val ranksByUsername = users.join(ranks).map{
28       case (id, (username, rank)) => (username, rank)
29     }
30     // print
31     ranksByUsername.foreach(println)
32   }
33 }

  3.执行结果

    Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第5张图片

四.ConnectedComponents连通体算法

  1.简介

    连通体算法实现把图划分为多个子图【不进行节点切分】,清除孤岛子图【只要一个节点的子图】。其使用子图中编号最小的顶点ID标记子图。

  2.代码实现

 1 package graphx
 2 
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.graphx.GraphLoader
 5 import org.apache.spark.sql.SparkSession
 6 
 7 /**
 8   * Created by Administrator on 2019/11/27.
 9   */
10 object ConnectedComponents {
11   Logger.getLogger("org").setLevel(Level.WARN)
12   def main(args: Array[String]) {
13     val spark = SparkSession.builder()
14       .master("local[2]")
15       .appName(s"${this.getClass.getSimpleName}")
16       .getOrCreate()
17     val sc = spark.sparkContext
18     val graph = GraphLoader.edgeListFile(sc, "D:\\software\\spark-2.4.4\\data\\graphx\\followers.txt")
19     // 调用connectedComponents连通体算法
20     val cc = graph.connectedComponents().vertices
21     // join
22     val users = sc.textFile("D:\\software\\spark-2.4.4\\data\\graphx\\users.txt").map(line => {
23       val fields = line.split(",")
24       (fields(0).toLong, fields(1))
25     })
26     // join
27     val ranksByUsername = users.join(cc).map {
28       case (id, (username, rank)) => (username, rank)
29     }
30     val count = ranksByUsername.count().toInt
31     // print
32     ranksByUsername.map(_.swap).takeOrdered(count).foreach(println)
33   }
34 }

  3.执行结果

    Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第6张图片

五.TriangleCount三角计数算法

  1.简介  

    当顶点有两个相邻的顶点且它们之间存在边时,该顶点是三角形的一部分。GraphX在TriangleCount对象中实现三角计数算法,该算法通过确定经过每个顶点的三角形的数量,从而提供聚类的度量。注意,TriangleCount要求边定义必须为规范方向【srcId < dstId】,并且必须使用Graph.partitionBy对图进行分区。

  2.代码实现

 1 package graphx
 2 
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.graphx.{PartitionStrategy, GraphLoader}
 5 import org.apache.spark.sql.SparkSession
 6 
 7 /**
 8   * Created by Administrator on 2019/11/27.
 9   */
10 object TriangleCount {
11   Logger.getLogger("org").setLevel(Level.WARN)
12   def main(args: Array[String]) {
13     val spark = SparkSession.builder()
14       .master("local[2]")
15       .appName(s"${this.getClass.getSimpleName}")
16       .getOrCreate()
17     val sc = spark.sparkContext
18     val graph = GraphLoader.edgeListFile(sc, "D:\\software\\spark-2.4.4\\data\\graphx\\followers.txt", true)
19       .partitionBy(PartitionStrategy.RandomVertexCut)
20 
21     // 调用triangleCount三角计数算法
22     val triCounts = graph.triangleCount().vertices
23     // map
24     val users = sc.textFile("D:\\software\\spark-2.4.4\\data\\graphx\\users.txt").map(line => {
25       val fields = line.split(",")
26       (fields(0).toLong, fields(1))
27     })
28     // join
29     val triCountByUsername = users.join(triCounts).map { case (id, (username, tc)) =>
30       (username, tc)
31     }
32     val count = triCountByUsername.count().toInt
33     // print
34     triCountByUsername.map(_.swap).takeOrdered(count).foreach(println)
35   }
36 }

  3.执行结果

    Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】_第7张图片

你可能感兴趣的:(Spark GraphX图算法应用【分区策略、PageRank、ConnectedComponents,TriangleCount】)