Python必不可少的小技巧,一行代码减少一半内存占用!

我想与大家分享一些我和我的团队在一个项目中经历的一些问题。在这个项目中,我们必须要存储和处理一个相当大的动态列表。测试人员在测试过程中,抱怨内存不足。下面介绍一个简单的方法,通过添加一行代码来解决这个问题。

图片的结果

Python必不可少的小技巧,一行代码减少一半内存占用!_第1张图片

下面我来解释一下,它是如何运行的。

首先,我们考虑一个简单的"learning"例子,创建一个Dataltem 类,该类是一个人的个人信息,例如姓名,年龄,地址等。

classDataItem(object):

    def__init__(self,name,age,address):

    self.name=name        

    self.age=age        

    self.address=address

初学者的问题:如何知道一个以上这样的对象占用多少内存?

首先,让我们试着解决一下:

d1=DataItem("Alex",42,"-")

print("sys.getsizeof(d1):",sys.getsizeof(d1))

我们得到的答案是56bytes,这似乎占用了很少的内存,相当满意喽。那么,我们在尝试另一个包含更多数据的对象例子:

d2=DataItem("Boris",24,"In the middle of nowhere")print("sys.getsizeof(d2):",sys.getsizeof(d2))

答案仍然是56bytes,此刻,似乎我们意识到哪里有些不对?并不是所有的事情都第一眼所见那样。

直觉不会让我们失望,一切都不是那么简单。Python是一种具有动态类型的非常灵活的语言,对于它的工作,它存储了大量的附加数据。它们本身占据了很多。

例如,sys.getsizeof("")返回33bytes,是的一个多达33个字节的空行!并且sys.getsizeof(1)返回24bytes,一个整个数字占用24个bytes(我想咨询C语言程序员,远离屏幕,不想在进一步阅读,以免对美观失去信心)。对于更复杂的元素,如字典,sys.getsizeof(.())返回272字节,这是针对空字典的,我不会再继续了,我希望原理是明确的,并且RAM的制造商需要出售他们的芯片。

但是,我们回到我们的DataItem类和最初的初学者的疑惑。

这个类,占多少内存?

首先,我们一小写的形式将这个类的完整内容输出:

def dump(obj):

    for attrindir(obj):

        print("  obj.%s = %r"%(attr,getattr(obj,attr)))

这个函数将显示隐藏的“幕后”使所有Python函数(类型、继承和其他内容)都能够正常工作的内容。

结果令人印象深刻:

Python必不可少的小技巧,一行代码减少一半内存占用!_第2张图片

这一切内容占用多少内存?

下边有一个函数可以通过递归的方式,调用getsizeof函数,计算对象实际数据量。

def get_size(obj,seen=None):

    # From    

    # Recursively finds sizeof objects    

    size=sys.getsizeof(obj)

    if seen is None:

        seen=set()

    obj_id=id(obj)

    if obj_id in seen:

        return0

# Important markasseen*before*entering recursion to gracefully handle    

    # self-referential objects   

    seen.add(obj_id)

    if is instance(obj,dict):

        size+=sum([get_size(v,seen)forvinobj.values()])

        size+=sum([get_size(k,seen)forkinobj.keys()])

    elif hasattr(obj,'__dict__'):

        size+=get_size(obj.__dict__,seen)

    elif hasattr(obj,'__iter__')and notisinstance(obj,(str,bytes,bytearray)):

        size+=sum([get_size(i,seen)foriinobj])returnsize

让我们试一试:

d1=DataItem("Alex",42,"-")

print("get_size(d1):",get_size(d1))

d2=DataItem("Boris",24,"In the middle of nowhere")

print("get_size(d2):",get_size(d2))

我们获得的答案分别为460bytes和484bytes,这结果似乎是真实的。

使用这个函数,你可以进行一系列的实验。例如,我想知道如果DataItem结构放在列表中,数据将占用多少空间。get_size ([d1])函数返回532bytes,显然,这与上面说的460+的开销相同。但是get_size ([d1, d2])返回863bytes,小于以上的460 + 484。get_size ([d1, d2, d1])的结果更有趣——我们得到了871字节,只是稍微多一点,也就是说Python足够聪明,不会再次为同一个对象分配内存。

现在,我们来看一看问题的第二部分。

是否存在减少内存开销的可能呢?

是的,可以的。Python是一个解释器,我们可以在任何时候扩展我们的类,例如,添加一个新的字段:

d1=DataItem("Alex",42,"-")

print("get_size(d1):",get_size(d1))

d1.weight=66

print("get_size(d1):",get_size(d1))

非常好,但是如果我们不需要这个功能呢?我们能强制解释器来指定类的列表对象使用__slots__命令:

class DataItem(object):

    __slots__=['name','age','address']

    def__init__(self,name,age,address):

        self.name=name 

        self.age=age       

        self.address=address

更多信息可以在文档(RTFM)中找到,其中写到“__ dict__和__weakref__”。使用__dict__节省的空间非常大”。

我们确认:是的,确实很重要,get_size (d1)返回…64字节,而不是460字节,即少7倍。另外,创建对象的速度要快20%(请参阅本文的第一个屏幕截图)。

唉,真正使用如此大的内存增益并不是因为其他开销。通过简单地添加元素,创建一个100,000的数组,并查看内存消耗:

data=[]

forpinrange(100000):

        data.append(DataItem("Alex",42,"middle of nowhere"))

snapshot=tracemalloc.take_snapshot()

top_stats=snapshot.statistics('lineno')

total=sum(stat.sizeforstatintop_stats)

print("Total allocated size: %.1f MB"%(total/(1024*1024)))

我们不使用__slots__占用内存16.8MB,使用时占用6.9MB。这个操作当然不是最好的,但是确实代码改变的最小的。(Not 7 times of course, but it’s not bad at all, considering that the code change was minimal.)

现在的缺点。激活__slots__禁止所有元素的创建,包括__dict__,这意味着,例如,一下代码将结构转换成json将不运行:

deftoJSON(self):

        returnjson.dumps(self.__dict__)

这个问题很容易修复,它是足以产生dict编程方式,通过所有元素的循环:

deftoJSON(self):

        data=dict()

        forvarinself.__slots__:

            data[var]=getattr(self,var)

        returnjson.dumps(data)

也不可能动态给这个类添加新类变量,但是在这个例子中,这并不是必需的。

今天的最后一个测试。有趣的是整个程序需要多少内存。添加一个无限循环的程序,以便它不结束,看看Windows任务管理器中的内存消耗。

没有 __slots__:

Python必不可少的小技巧,一行代码减少一半内存占用!_第3张图片

6.9Mb 变成 27Mb … 好家伙, 毕竟, 我们节省了内存, 27Mb 代替 70 ,对于增加一行代码来说并不是一个坏的例子

注意:TraceMelc调试库使用了许多附加内存。显然,她为每个创建的对象添加了额外的元素。如果关闭它,总的内存消耗将少得多,截屏显示两个选项:

Python必不可少的小技巧,一行代码减少一半内存占用!_第4张图片

如果你想节省更多的内存呢?

这可以使用numpy库,它允许您以C样式创建结构,但是在我的例子中,它需要对代码进行更深入的细化,并且第一种方法就足够了。

奇怪的是在Habré从来没有详细分析使用__slots__,我希望本文将填补这一空缺。

结论


Python必不可少的小技巧,一行代码减少一半内存占用!_第5张图片

这篇文章似乎是一个anti-Python广告,但并不是。Python非常可靠(为了“降低”Python程序,您必须非常努力),它是一种易于阅读和方便编写代码的语言。这些优点在很多情况下都大于缺点,但是如果您需要最大的性能和效率,您可以使用像numpy这样的库,它是用C++编写的,它可以很快和高效地与数据一起工作。

你可能感兴趣的:(Python必不可少的小技巧,一行代码减少一半内存占用!)