A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
Write a data structure CBTInserter
that is initialized with a complete binary tree and supports the following operations:
CBTInserter(TreeNode root)
initializes the data structure on a given tree with head noderoot
;CBTInserter.insert(int v)
will insert aTreeNode
into the tree with valuenode.val = v
so that the tree remains complete, and returns the value of the parent of the insertedTreeNode
;CBTInserter.get_root()
will return the head node of the tree.
Example 1:
Input: inputs = ["CBTInserter","insert","get_root"], inputs = [[[1]],[2],[]]
Output: [null,1,[1,2]]
Example 2:
Input: inputs = ["CBTInserter","insert","insert","get_root"], inputs = [[[1,2,3,4,5,6]],[7],[8],[]]
Output: [null,3,4,[1,2,3,4,5,6,7,8]]
Note:
- The initial given tree is complete and contains between
1
and1000
nodes. CBTInserter.insert
is called at most10000
times per test case.- Every value of a given or inserted node is between
0
and5000
.
这道题说是让实现一个完全二叉树的插入器的类,之前也做过关于完全二叉树的题 Count Complete Tree Nodes。首先需要搞清楚的是完全二叉树的定义,即对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,换句话说,完全二叉树从根结点到倒数第二层满足完美二叉树,最后一层可以不完全填充,其叶子结点都靠左对齐。由于插入操作要找到最后一层的第一个空缺的位置,所以很自然的就想到了使用层序遍历的方法,由于插入函数返回的是插入位置的父结点,所以在层序遍历的时候,只要遇到某个结点的左子结点或者右子结点不存在,则跳出循环,则这个残缺的父结点刚好就在队列的首位置。那么在插入函数时,只要取出这个残缺的父结点,判断若其左子结点不存在,说明新的结点要连接在左子结点上,否则将新的结点连接在右子结点上,并把此时的左右子结点都存入队列中,并将之前的队首元素移除队列即可,参见代码如下:
解法一:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree_root = root;
q.push(root);
while (!q.empty()) {
auto t = q.front();
if (!t->left || !t->right) break;
q.push(t->left);
q.push(t->right);
q.pop();
}
}
int insert(int v) {
TreeNode *node = new TreeNode(v);
auto t = q.front();
if (!t->left) t->left = node;
else {
t->right = node;
q.push(t->left);
q.push(t->right);
q.pop();
}
return t->val;
}
TreeNode* get_root() {
return tree_root;
}
private:
TreeNode *tree_root;
queue q;
};
下面这种解法缩短了建树的时间,但是极大的增加了插入函数的运行时间,因为每插入一个结点,都要从头开始再遍历一次,并不是很高效,可以当作一种发散思维吧,参见代码如下:
解法二:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree_root = root;
}
int insert(int v) {
queue q{{tree_root}};
TreeNode *node = new TreeNode(v);
while (!q.empty()) {
auto t = q.front(); q.pop();
if (t->left) q.push(t->left);
else {
t->left = node;
return t->val;
}
if (t->right) q.push(t->right);
else {
t->right = node;
return t->val;
}
}
return 0;
}
TreeNode* get_root() {
return tree_root;
}
private:
TreeNode *tree_root;
};
再来看一种不使用队列的解法,因为队列总是要遍历,比较麻烦,如果使用数组来按层序遍历的顺序保存这个完全二叉树的结点,将会变得十分的简单。而且有个最大的好处是,可以直接通过坐标定位到其父结点的位置,通过 (i-1)/2 来找到父结点,这样的话就完美的解决了插入函数要求返回父结点的要求,而且通过判断当前完整二叉树结点个数的奇偶,可以得知最后一个结点是在左子结点上还是右子结点上,这样就可以直接将新加入的结点连到到父结点的正确的子结点位置,参见代码如下:
解法三:
class CBTInserter {
public:
CBTInserter(TreeNode* root) {
tree.push_back(root);
for (int i = 0; i < tree.size(); ++i) {
if (tree[i]->left) tree.push_back(tree[i]->left);
if (tree[i]->right) tree.push_back(tree[i]->right);
}
}
int insert(int v) {
TreeNode *node = new TreeNode(v);
int n = tree.size();
tree.push_back(node);
if (n % 2 == 1) tree[(n - 1) / 2]->left = node;
else tree[(n - 1) / 2]->right = node;
return tree[(n - 1) / 2]->val;
}
TreeNode* get_root() {
return tree[0];
}
private:
vector tree;
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/919
类似题目:
Count Complete Tree Nodes
参考资料:
https://leetcode.com/problems/complete-binary-tree-inserter/
https://leetcode.com/problems/complete-binary-tree-inserter/discuss/178424/C%2B%2BJavaPython-O(1)-Insert
https://leetcode.com/problems/complete-binary-tree-inserter/discuss/178528/Java-Solution%3A-O(1)-Insert-VS.-O(1)-Pre-process-Trade-Off
https://leetcode.com/problems/complete-binary-tree-inserter/discuss/178427/Java-BFS-straightforward-code-two-methods-Initialization-and-insert-time-O(1)-respectively.
LeetCode All in One 题目讲解汇总(持续更新中...)