- PyTorch 中结合迁移学习和强化学习的完整实现方案
小赖同学啊
人工智能pytorch迁移学习人工智能
结合迁移学习(TransferLearning)和强化学习(ReinforcementLearning,RL)是解决复杂任务的有效方法。迁移学习可以利用预训练模型的知识加速训练,而强化学习则通过与环境的交互优化策略。以下是如何在PyTorch中结合迁移学习和强化学习的完整实现方案。1.场景描述假设我们有一个任务:训练一个机器人手臂抓取物体。我们可以利用迁移学习从一个预训练的视觉模型(如ResNet
- pytorch 模型测试
小赖同学啊
人工智能pytorch人工智能python
在使用PyTorch进行模型测试时,一般包含加载测试数据、加载训练好的模型、进行推理以及评估模型性能等步骤。以下为你详细介绍每个步骤及对应的代码示例。1.导入必要的库importtorchimporttorch.nnasnnimporttorchvisionimporttorchvision.transformsastransforms2.加载测试数据假设我们使用的是CIFAR-10数据集作为示例
- Python快速实现经典小游戏“打砖块”
壹屋安源
pythonpygame小游戏逻辑
目录1.游戏框架和初始化2.游戏常量和颜色3.字体设置4.创建游戏对象:挡板、球和砖块挡板类`Paddle`球类`Ball`砖块类`Brick`5.游戏逻辑:碰撞检测6.创建按钮和界面交互7.游戏主循环和结束逻辑8.总结这段代码是一个经典的“打砖块”游戏的实现,使用了Python的`pygame`库进行图形界面的开发。游戏的基本玩法是通过控制一个可左右移动的挡板,反弹小球打破屏幕上方的砖块,玩家需
- 大模型在高血压预测及围手术期管理中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2研究目的1.3国内外研究现状二、大模型预测高血压的原理与方法2.1常用大模型介绍2.2数据收集与预处理2.3模型训练与验证三、术前风险预测与手术方案制定3.1术前风险因素分析3.2大模型预测术前风险的方法与结果3.3基于预测结果的手术方案制定四、术中风险预测与麻醉方案制定4.1术中风险因素分析4.2大模型实时监测与风险预测4.3基于预测结果的麻醉方案制定五、术
- WPF自定义控件(教程含源码)- 实现可以平滑滚动的Panel 控件
lhyriver
WPF自定义控件wpf
控件需求WPF控件提供了ScrollViewer来实现滚动视图。ScrollViewer的PageDown、PageUp、PageLeft、PageRight方法可以滚动一个视图大小的尺寸,但是ScrollViewer滚动时比较僵硬,没有动画效果。控件设计方案平滑滚动控件命名为RWrapPanel,继承WrapPanel类和IScrollInfo接口。将WrapPanel放入ScrollViewe
- python中的datatime
2301_80436761
前端javascriptpython
Python的datetime模块提供了处理日期和时间的类和函数,非常强大且易于使用。以下是对datetime模块的主要功能和类的总结:1.主要类datetime模块包含以下几个主要类:datetime.date:表示日期,包含年、月、日。datetime.time:表示时间,包含时、分、秒、微秒。datetime.datetime:表示日期和时间的组合。datetime.timedelta:表示
- Python 制作 AI 井字棋小游戏
壹屋安源
Python小游戏python人工智能pygame井字棋AI
目录项目简介功能实现项目环境和依赖核心代码解析1.初始化和游戏主类2.绘制棋子3.Minimax算法实现AI决策4.游戏主循环运行效果展示总结完整代码获取导语:今天我们一起来用Python和Pygame制作一个带有AI功能的井字棋小游戏。项目代码包含了基础的游戏逻辑、玩家与AI对战的功能,AI的决策基于Minimax算法实现,能够让你的游戏更具挑战性!项目简介井字棋(Tic-Tac-Toe)是一个
- AAAI 2024 | Attentive Eraser:通过自注意力重定向引导释放扩散模型的物体移除潜力
小白学视觉
计算机顶会论文解读人工智能计算机视觉AAAI论文解读计算机顶会
论文信息题目:AttentiveEraser:UnleashingDiffusionModel’sObjectRemovalPotentialviaSelf-AttentionRedirectionGuidanceAttentiveEraser:通过自注意力重定向引导释放扩散模型的物体移除潜力作者:WenhaoSun,BenleiCui,Xue-MeiDong,JingqunTang源码:http
- 【大模型开源实战】10 分钟,教你如何用 LLama-Factory 训练和微调大模型
Langchain
llama人工智能自然语言处理大模型LLaMAFactoryLLM大语言模型
在这个AI快速发展的时代,我们很高兴为大家带来LlamaFactory-一个为AI开发者和爱好者量身打造的实用工具平台。作为非计算机专业出身的开发者,我们深深受益于计算机世界的开放共享精神。今天,我们希望通过LlamaFactory为这个社区贡献我们的一份力量。LlamaFactory能为您提供什么?英文文档的AI翻译:利用大语言模型将英文文档翻译成中文,助您更便捷地获取最新技术信息。快速获取主流
- IDEA入门及常用快捷键
tyrolin
intellij-ideajavaide
IDEA是java常用的IDE。当run一个.java文件时,其实是经历了先编译为.class,再运行的过程。在project文件夹中,out文件夹存储编译的.class文件,src文件夹存储.java代码文件。设置自动导包快捷键:格式化快捷键:Control+alt+L生成构造器,右键generate,constructor光标点到类,查看类的层级关系,ctrl+H光标点到方法,定位到方法,ct
- AI大模型学习笔记-- 大模型应用技术架构
AI大模型-搬运工
人工智能学习笔记语言模型大模型AI大模型AI
AI大模型学习笔记--大模型应用技术架构大模型就像是大脑,就像孩子从小学习说话和认知世界一样,通过大量的数据学习,能够理解语言、识别图像、玩游戏、写作、作曲等。如果2023年是AI大模型爆发的一年,很多大厂投入到大模型的研发中,很多创业者通过AI大模型拿到了大笔融资,那对于2024年,将是AI大模型应用大爆发的一年,将有更多的普通人加入到这一浪潮中来。今天,请跟着我一起来揭开大模型应用的神秘面纱,
- 【计算机网络】多路复用
茉菇
php开发语言
1.定义与核心思想多路复用(Multiplexing)是一种通过单一资源(如一个线程、一个网络连接或一个物理信道)同时处理多个独立任务或数据流的技术。其核心目标是提高资源利用率,避免为每个任务单独分配资源导致的性能瓶颈或资源浪费。2.多路复用的类型根据应用场景和技术实现,多路复用主要分为以下两类:2.1物理层的多路复用(通信领域)用于在单一物理媒介(如光纤、电缆)中同时传输多路信号:频分多路复用(
- 【Java】网络通信IO模型
茉菇
java开发语言
Java网络编程中的IO(Input/Output)模型是管理计算机对外部数据读取和写入操作的重要机制。Java提供了多种IO模型来满足不同的网络通信需求。一、阻塞IO(BIO,BlockingI/O)概念:阻塞IO是最简单和直观的一种IO模型。在BIO模型中,当用户线程发起系统调用时,内核会一直等待,直到有数据可读或可写,才会返回结果。特点:同步阻塞:服务器实现模式为一个连接一个线程,即客户端有
- AI大语言模型(LLM):电商行业的搜索革命与未来趋势
搞技术的妹子
人工智能语言模型智能电视
大语言模型:电商行业的搜索革命与未来趋势一、大语言模型在电商搜索中的应用1.提升搜索精准度2.改善搜索召回率3.虚拟购物助手二、大语言模型与生成性AI的结合1.生成性AI:从搜索到对话式购物体验2.提升个性化推荐三、大语言模型的未来展望1.电商与LLM的深度融合2.面临的挑战与机遇随着人工智能的快速发展,电商行业正在经历一场深刻的变革。尤其是在搜索技术方面,大语言模型(LLM)正逐渐成为提升用户体
- 寻找最优解的算法-模拟退火算法(Simulated Annealing)
搞技术的妹子
算法模拟退火算法人工智能
模拟退火算法(SimulatedAnnealing,简称SA)是一种基于物理退火过程的优化算法。它灵感来源于金属退火过程中的分子运动——在高温下,金属分子的自由度很高,随着温度的逐渐降低,分子排列逐渐有序,最终达到最低能量状态。退火算法通过模拟这一过程,解决复杂的优化问题。在现实生活中,我们经常会遇到寻找最优解的问题,无论是优化路线、调度任务还是调整模型参数。模拟退火算法(SimulatedAnn
- 【量子退火(Quantum Annealing, QA)在Machine Learning Classification中的应用】
搞技术的妹子
机器学习量子计算人工智能
随着量子计算技术的发展,**量子退火(QuantumAnnealing,QA)成为了优化问题中一种潜力巨大的方法。它不仅可以用于求解传统优化问题,还被逐渐应用于机器学习领域,特别是机器学习分类(MachineLearningClassification)**任务中。在这篇博客中,我们将探讨量子退火在机器学习分类中的应用,并通过一个实际的案例来展示如何使用量子退火优化分类模型。什么是量子退火(Qua
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- Scaling Laws(缩放法则)详解
天一生水water
人工智能人工智能
ScalingLaws(缩放法则)详解1.定义与核心概念ScalingLaws(缩放法则)描述的是模型性能(如准确率、任务表现)与计算资源(模型参数量、训练数据量、训练时间)之间的数学关系。其核心观点是:随着模型规模、数据量和计算资源的增加,模型性能会按特定规律持续提升,而非达到“性能天花板”。这一概念最早由OpenAI在2020年的论文《ScalingLawsforNeuralLanguageM
- 三、Jvm内存分配
刘总Java
Java虚拟机jvmjava开发语言
今天的博客主题Java虚拟机——》Jvm内存分配什么是JVM内存分配呢?就是当我们创建一个对象的时候,要在JVM内存空间里为这个对象分配一些空间,来存放对象的一些属性信息。对象创建的流程1)类加载检查在创建对象的过程中,也就是new一个对象的时候。首先检查new指令的参数在常量池中定位到一个类的符号引用,并检查这个符号引用代表的类是否已经被加载,解析和初始化过。如有没有,说明这个类没有被加载使用过
- JAVA多线程详解(超详细)
m0_74823434
面试学习路线阿里巴巴资料职业发展javapython开发语言后端
目录一、线程简介1、进程、线程2、并发、并行、串行3、进程的三态二、线程实现1、继承Thread类2、实现Runnable接口3、实现Callable接口(不常用)三、线程常用方法1、线程的状态2、线程常用方法四、多线程1、守护(Deamon)线程2、多线程并发与同步3、死锁4、Lock(锁)5、线程协作6、线程池一、线程简介1、进程、线程程序:开发写的代码称之为程序。程序就是一堆代码,一组数据和
- 已完成生成项目“xxx.vcxproj”的操作 - 失败。
小羊byte
前端算法javascript
原因:对在类外对某个的拷贝构造函数或者赋值运算符函数进行实现,但是在类中没有进行声明。如下:test.h:classData{public:Data(Data*other=nullptr);~Data();private:Data*m_pdate;};test.cpp:#include"test.h"#includeData::Data(Data*other):m_pdate(other){}Da
- 后端java的复习-常用API(个人笔记)
狴犴ys
java基础后端技术栈巩固复习java
常用apiObjecttoString方法equals方法finalize方法clone()方法SystemString构造方法常用方法获取型判断型转换型StringBuffer与StringBuilder八种基本数据类型包装类八种包装类IntegerDate获取系统当前时间Date->StringString->DateCalendar(日历)介绍常用方法匿名内部类ObjecttoString方
- 命令行选项
weixin_34348111
问题描述请你写一个命令行分析程序,用以分析给定的命令行里包含哪些选项。每个命令行由若干个字符串组成,它们之间恰好由一个空格分隔。这些字符串中的第一个为该命令行工具的名字,由小写字母组成,你的程序不用对它进行处理。在工具名字之后可能会包含若干选项,然后可能会包含一些不是选项的参数。选项有两类:带参数的选项和不带参数的选项。一个合法的无参数选项的形式是一个减号后面跟单个小写字母,如"-a"或"-b"。
- LLM OS 系统架构详细设计
AI天才研究院
AI大模型企业级应用开发实战系统架构
LLMOS系统架构详细设计1.背景介绍近年来,大型语言模型(LargeLanguageModel,LLM)取得了飞速发展,在自然语言处理、对话系统、文本生成等领域展现出卓越的性能。然而,现有的LLM系统架构仍然存在诸多局限性,例如可扩展性不足、资源利用率低下、缺乏灵活的应用开发支持等。为了充分发挥LLM的潜力,迫切需要一个高效、灵活、易用的LLM操作系统(OperatingSystem,OS)。本
- LangChain链与记忆处理[10]:四种基础内置链、四种文档处理链,以及链的自定义和五种运行方式,让你的大模型更加智能
汀、人工智能
AIAgentlangchainLangGraph人工智能大模型智能问答chainAgent
LangChain链与记忆处理[10]:四种基础内置链、四种文档处理链,以及链的自定义和五种运行方式,让你的大模型更加智能参考文章可以使用国产LLM进行下述项目复现:初识langchain[1]:Langchain实战教学,利用qwen2.1与GLM-4大模型构建智能解决方案[含Agent、tavily面向AI搜索]langchain[2]:Langchain实战教学,国内大模型LLM选择以及主流
- DenseUNet 改进:添加ASPP模块
听风吹等浪起
AI改进系列深度学习人工智能计算机视觉神经网络网络
目录1.ASPP模块2.DenseUNet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.ASPP模块ASPP(AtrousSpatialPyramidPooling,空洞空间金字塔池化)是语义分割模型(如DeepLab系列)中的核心模块,旨在捕捉多尺度上下文信息,提升模型对不同尺寸物体的分割效果。1.背景与动机问题:图像中的物体尺寸差异大(如汽
- 设计链表 力扣707
随风756
链表leetcode数据结构
一、题目你可以选择使用单链表或者双链表,设计并实现自己的链表。单链表中的节点应该具备两个属性:val和next。val是当前节点的值,next是指向下一个节点的指针/引用。如果是双向链表,则还需要属性prev以指示链表中的上一个节点。假设链表中的所有节点下标从0开始。实现MyLinkedList类:MyLinkedList()初始化MyLinkedList对象。intget(intindex)获取
- tensorflow Serving架构详解和代码示例
lloyd_chou
算法ml机器翻译智慧城市边缘计算人工智能
本文介绍tensorflowServing的原理和代码实现,并提供简要的代码阅读指导.如何serve一个模型具体的步骤可以参考官方文档.主要包括两个部分:1.导出模型1.启动服务需要说明的是导出模型部分.如果要把我们训练的模型拿来提供服务,除了模型本身外,还需要一些额外的信息,比如模型的名称,输入、输出对应的tensor信息,方法名,这些东西可以让TFS进行请求数据的格式检查以及目标模型查找.这就
- 【python】字典的定义及常用操作
Luminary74
python基础
仅作为自己学习、复习参考,若有问题,欢迎指正!目录字典的定义字典的定义字典是另一种可变容器模型,且可存储任意类型对象。字典的每个键值key=>value对用冒号:分割,每个对之间用逗号(,)分割,整个字典包括在花括号{}中,格式如下所示:d={key1:value1,key2:value2,key3:value3}一种新的数据类型,映射的类型:字典(python)字典包括哈希值和指定的对象{"哈希
- 机器学习笔记 - 监督学习备忘清单
坐望云起
深度学习从入门到精通监督学习线性模型支持向量机生成学习集成方法
一、监督学习简介给定一组数据点关联到一组结果,我们想要构建一个分类器,学习如何从预测。1、预测类型下表总结了不同类型的预测模型:2、模型类型下表总结了不同的模型:
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的