[LeetCode] 22. 括号生成(回溯/DP)

题目

给出 n 代表生成括号的对数,请你写出一个函数,使其能够生成所有可能的并且有效的括号组合。

例如,给出 n = 3,生成结果为:

[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/generate-parentheses
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

方法一 回溯

  • 回溯法使用递归,并在递归过程中考虑剪枝。此外,递归要考虑终止条件,考虑传的参数,参数可以包括结果的集合,一直要用的变的量,随着递归层数不同变化的计数量,临时的作为最终结果的str。
  • 此题目中,从长度为0到长度为2n递归生成一组有效括号组合,满足条件的下一层递归分支才进入(即进行了剪枝):当当前左括号数量

方法二 DP

  • 大概递归思想:dp[n]='('+dp[i]+')'+dp[n-1-i] ,n 从0到用户输入的N,对于计算dp[n]遍历所有可能的i,,其中dp[n]表示长度为2*n的所有有效串。
  • 存储方法也很有意思,用List ans,最终用ans.get(n)获得长度为2*n的所有有效括号组合。
  • 方法一二的时间复杂度相同,都只遍历了有效的分支,且没有重复。?

代码

代码一 回溯

class Solution {
    public static List generateParenthesis(int n) {
        List parenthesis = new ArrayList<>();
        traceBack("", 0, 0, n, parenthesis);
        return parenthesis;
    }

    private static void traceBack(String str, int left, int right, int n,
            List parenthesis) {
        if (str.length() == 2 * n) {
            parenthesis.add(new String(str));
            return;
        }
        if (left < n) {
            traceBack(str + '(', left + 1, right, n, parenthesis);
        }
        if (right < left) {
            traceBack(str + ')', left, right + 1, n, parenthesis);
        }
    }
}

代码二 DP

class Solution {
   public List generateParenthesis(int n) {
        List> parenthesis = new ArrayList<>();// 所有长度<=2n的括号组合

        // 将长度为0的括号组合,放入parenthesis
        ArrayList list = new ArrayList<>();
        list.add("");
        parenthesis.add(list);

        // 由nn为1至n一层层算2*nn长度的括号组合,放入parenthesis
        for (int nn = 1; nn <= n; ++nn) {
            List parenthesisTemp = new ArrayList<>();
            for (int leftLen = 0; leftLen <= nn - 1; ++leftLen) {
                for (String leftStr : parenthesis.get(leftLen)) {
                    for (String rightStr : parenthesis.get(nn - 1 - leftLen)) {
                        parenthesisTemp.add(new String('(' + leftStr + ')' + rightStr));
                    }
                }
            }
            parenthesis.add(parenthesisTemp);
        }

        return parenthesis.get(n);
    }
}

你可能感兴趣的:([LeetCode] 22. 括号生成(回溯/DP))