- 安装python后如何安装numpy_如何简单安装NumPy与SciPy
2015-12-27回答numpy是一个定义了数值数组和矩阵类型和它们的基本运算的语言扩展。scipy是一种使用numpy来做高等数学、信号处理、优化、统计和许多其它科学任务的语言扩展。学习这两个工具的话,官方有很详细的文档和教程来帮助入门:我是传送门另外,还有一本书《numpyandscipy》,很薄,才67页:我是传送门如何安装numpy和scipy之所以写这篇文章主要是因为scipy官网貌似
- 数据分析综合应用 30分钟精通计划
z日火
校招学习日记数据分析数据挖掘
数据分析综合应用30分钟精通计划(完整版含输出)⏰时间分配5分钟:数据加载与清洗基础10分钟:探索性数据分析(EDA)10分钟:数据分析实战案例5分钟:分析报告生成第一部分:数据加载与清洗基础(5分钟)1.模拟真实数据集importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportwarningswarnings
- Python高效编程技术大全:从解释器到异步编程
竹石文化传播有限公司
本文还有配套的精品资源,点击获取简介:《Python高性能编程技术》旨在指导开发者深入理解Python的性能优化方法。本书涵盖了从解释器机制、数据结构和内置函数的优化,到使用Numpy、Pandas、多线程和多进程进行数值计算和数据处理,再到并发编程和性能分析等全面技术,帮助开发者提升代码执行效率和处理各种性能挑战。1.Python解释器性能分析Python作为一门解释型语言,其性能受到解释器行为
- Python Day16
赵英英俊
Python训练python
@浙大疏锦行Pythonday16内容:numpy数组的创建以及相关操作numpy的索引理解SHAP值代码:importnumpyasnpa=np.array([[1,2],[3,4],[5,6]])b=np.array([[7,8],[9,10],[11,12]])效果:
- 051-OpenCV GrabCut图像分割算法
话不多说,上代码,看结果。importcv2#导入库importnumpyasnp'''cv2.imread(filename,flags)#filename为文件名,图片与.py文件在一个文件夹时输入文件名即可#不在一个文件夹时输入图片的路径和名字#flags为图片的颜色类型,默认为1,灰度图像为0'''img=cv2.imread('89.jpg')mask=np.zeros(img.shap
- Node.js基础用法
Komorebi_9999
node.js
一、基础用法与核心模块1.运行Node.js脚本bash#运行JS文件nodescript.js#进入交互式环境(REPL)node2.核心模块示例文件系统(fs模块)javascriptconstfs=require('fs').promises;//异步Promise版本constpath=require('path');//读取文件asyncfunctionreadFile(){try{co
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- 【day1】Python基础知识-pycharm版
m0_56051615
pycharmpythonide
内容:IDLE介绍使用、建立python源文件、python程序格式(缩进和注释)、海龟绘图、对象的组成、栈内存和堆内存、标识符、变量安装PyCharm和AnacondaAnaconda是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。包含了conda、Python在内的超过180个科学包及其依赖项。其包含的科学包包括:numpy,pandas,ipythonnotebook等
- 手绘电路图的节点和端点检测一个简化版的算法实现框架
zhangfeng1133
算法
于论文描述,我将提供一个简化版的算法实现框架,用于手绘电路图的节点和端点检测,并整合生成电路原理图。以下代码结合了YOLOv5目标检测和传统图像处理技术,符合论文中提到的98.2%mAP和92%节点识别准确率的关键指标。核心算法实现(Python+OpenCV+YOLOv5)importcv2importnumpyasnpimporttorchfromyolov5importYOLOv5#需要安装
- Python实现神经网络算法指南
代码编织匠人
python神经网络算法
Python实现神经网络算法指南神经网络是一种模拟人脑神经元结构进行信息处理的机器学习算法。在深度学习领域中,神经网络是最为强大的算法之一。Python作为一门简单易学的编程语言,也成为了许多人选择实现神经网络算法的首选语言。在本篇文章中,我们将通过Python代码来实现神经网络算法。导入必要的库为了实现神经网络算法,我们需要导入一些必要的Python库,包括numpy和matplotlib。其中
- torch numpy sort排序出现索引顺序不正常
明天,今天,此时
numpy
问题torch调用numpy,numpy的sort排序值的顺序没发现问题,但是排序的索引argsort()是有明显问题。方案多一次取索引arr.argsort().argsort()参考:https://blog.csdn.net/qq_50571974/article/details/123173118说明:argsort其实是没问题的,理解有点复杂,以序号的角度去测试和思考
- Vue 3 路由传参使用指南
Franciz小测测
vue.jsjavascript前端
目录一、路由传参概述二、动态路由参数(params)2.1基础用法2.2传递参数2.3获取参数2.4可选参数2.5多个参数与正则约束2.6多params的详细用法多个可选参数的使用路由配置获取可选参数三、查询参数(Query)3.1特点与应用场景3.2传递参数3.3获取参数3.4保留当前查询参数四、命名视图传参五、props解耦(推荐方式)六、状态管理(Pinia/Vuex)6.1使用Pinia示
- 超详细 Conda 指令详解---附有相应的示例
以下是所有conda指令的详细列表,并附有相应的示例超详细Conda指令详解环境管理命令condacreate:创建新环境condacreate--name[package_spec1package_spec2...]示例:condacreate--namemyenvnumpypandascondainstall:安装包到当前环境condainstall[--name][--file][--cha
- 第二十四篇 Requests+BeautifulSoup,秒抓网站信息!你的智能信息收集器!
爱分享的飘哥
日常效率自动化beautifulsoupPython爬虫Requests数据抓取办公自动化信息收集
python爬虫序言:手动复制粘贴网页数据?效率太低了1.网页数据抓取基础:HTTP请求与网页结构速览1.1HTTP请求:浏览器如何和网页交互?1.2网页结构:HTML,信息的载体2.Requests库:发送网络请求的利器2.1安装与基础用法:你的第一个HTTP请求2.2处理请求头与参数:模拟浏览器访问3.BeautifulSoup:解析网页的利器3.1安装与基础用法:快速解析HTML内容3.2精
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- C回调函数基础用法
定义:回调函数是通过函数指针传递给另一个函数的函数,这个被传进去的函数将在某个时刻被“回调”调用。换句话说:你定义一个函数A把函数A的地址(即函数指针)作为参数传给函数B函数B在合适的时机调用A(即“回调”)作用:用于“动态行为”、插件机制、自定义逻辑注入,非常常见于库函数、操作系统、图形界面、信号处理等场景。回调函数=把函数指针作为参数传进去,在“合适时机”通过这个指针调用你传进去的函数。cod
- Python 数据分析与可视化:从基础到进阶的技术实现与优化策略
女码农的重启
python数据分析开发语言
数据分析与可视化是数据科学领域的核心技能,Python凭借其丰富的库生态和灵活的编程范式,成为该领域的首选工具。本文将系统讲解Python数据分析与可视化的技术栈实现,从基础操作到性能优化,结合实战场景提供可复用的解决方案。数据分析核心库技术解析Pandas数据处理引擎原理Pandas作为数据分析的基石,其核心优势在于基于NumPy的矢量运算和高效的内存管理。与Excel的单元格级操作不同,Pan
- Python - 数据分析三剑客之Pandas
MinggeQingchun
PythonPythonPandas
阅读前可参考NumPy文章https://blog.csdn.net/MinggeQingchun/article/details/148253682https://blog.csdn.net/MinggeQingchun/article/details/148253682Pandas是Python中一个强大的开源数据分析库,专门用于处理结构化数据(如表格、时间序列等),其核心数据结构为Seri
- C++11堆操作深度解析:std::is_heap与std::is_heap_until原理解析与实践
文章目录堆结构基础与函数接口堆的核心性质函数签名与核心接口std::is_heapstd::is_heap_until实现原理深度剖析std::is_heap的验证逻辑std::is_heap_until的定位策略算法优化细节代码实践与案例分析基础用法演示自定义比较器实现最小堆检查边缘情况处理性能分析与实际应用时间复杂度对比典型应用场景与手动实现的对比注意事项与最佳实践迭代器要求比较器设计C++标
- C++STL-set
s15335
C++STLc++开发语言
一.基础概念set也是一种容器,像vector,string这样,但它是树形容器。在物理结构上是二叉搜索树,逻辑上还是线性结构。set容器内元素不可重复,multiset内容器元素可以重复;这两个容器,插入的元素都是有序排列。二.基础用法1.set对象创建1.默认构造函数sets1;2.初始化列表sets2_1={9,8,7,6,5};//56789sets2_2({9,8,7,7,6,5});/
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- 使用tensorflow的多项式回归的例子(二)
lishaoan77
tensorflowtensorflow回归人工智能多项式回归
例2importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotaspltplt.style.use('default')#importtensorflow.contrib.eagerastfe#fromgoogle.colabimportfiles#tf.enable_eager_execution()x=np.arange(0,5,0.1
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- 使用 Python 制作华夫饼图进行同类型指标比较
追逐程序梦想者
pythonmatplotlib开发语言
使用Python制作华夫饼图进行同类型指标比较华夫饼图(WaffleChart)是一种用于展示数据比例的可视化方式。与传统的饼图相比,华夫饼图更加直观地展示了不同部分的占比情况。在同类型指标的比较中,华夫饼图也是一种非常有用的工具。在Python中,我们可以使用matplotlib库来制作华夫饼图。下面是一个简单的例子:importmatplotlib.pyplotaspltimportnumpy
- Golang defer 的编译器实现细节
Golang编程笔记
golang开发语言后端ai
Golangdefer的编译器实现细节:从语法糖到运行时的全链路解析关键词:Go语言、defer、编译器优化、运行时、延迟执行摘要:本文将深入解析Go语言中defer关键字的底层实现细节。我们将从defer的基础用法出发,逐步拆解编译器如何将defer语法转换为机器可执行的代码,并结合Go编译器的优化历史(如开放编码优化)、运行时关键结构体(_defer)以及实际汇编代码,揭示defer从“语法糖
- 【零基础学AI】第31讲:目标检测 - YOLO算法
1989
0基础学AI人工智能目标检测YOLOrnnlstmtensorflow
本节课你将学到YOLO算法的核心思想和工作原理如何使用YOLO进行物体检测构建一个简单的物体检测系统开始之前环境要求Python3.8+需要安装的包:opencv-python,numpy,matplotlib硬件要求:推荐使用GPU(非必须)前置知识基本Python编程能力了解卷积神经网络(CNN)的基本概念(第24讲内容)核心概念什么是目标检测?目标检测就像教计算机"看"图片中的物体。它不仅要
- MinerU:高效智能PDF文档解析工具完全指南
MinerU是一款将PDF转化为机器可读格式的工具(如markdown、json),可以很方便地抽取为任意格式。目录一、简介二、主要功能三、环境支持1.软硬件环境支持说明2.系统与硬件要求四、本地部署1.创建Python虚拟环境2.安装MinerU2.1使用pip或uv安装2.2源码安装3.使用MinerU3.1命令行使用方式基础用法查看帮助信息参数详解3.2模型源配置3.3使用本地模型总结一、简
- 【数据可视化】在 Python 中使用 Matplotlib 进行数据可视化
干了这一碗BUG
pythonmatplotlib信息可视化数据可视化
Matplotlib是一个广泛使用的Python库,用于创建静态、动画和交互式数据可视化。它建立在NumPy之上,能够轻松处理大型数据集,以创建各种类型的图表,如折线图、柱状图、散点图等。这些可视化通过图表清晰地展示数据,帮助我们更好地理解数据。在本文中,我们将了解如何在Matplotlib中创建不同类型的图表并对其进行自定义。安装用于数据可视化的Matplotlib要安装Matplotlib,我
- 机器学习-K近邻算法
shy_snow
python机器学习机器学习近邻算法人工智能
k-近邻分类算法,即物以类聚的思想,通过已知分类中的点和未知分类的点距离最近的前k个点的分类来预测未知点的分类。kNN.pyfromnumpyimport*importoperatordefcreateDataSet():group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])labels=['A','A','B','B']returngroup,label
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep