- OpenCV图像数据处理:convertTo,normalize和scaleAdd
luofeiju
OpenCV函数实战opencv
在OpenCV图像处理的世界里,有几个函数进行一些基本数据变换:cv::convertTo():类型转换与线性缩放;cv::normalize():归一化处理;cv::scaleAdd():加权叠加运算。cv::addWeighted():与scaleAdd相似,进行加权叠加运算;一、cv::convertTo():线性变换+数据类型转换voidcv::Mat::convertTo(OutputA
- MATLAB实现快速非局部均值图像去噪方法
一只爪子
本文还有配套的精品资源,点击获取简介:非局部均值滤波是一种先进的图像去噪技术,与传统方法相比,它利用图像的全局信息来去除噪声,同时保持图像细节。该算法通过搜索和利用整个图像中相似的像素块,对每个像素点进行去噪处理。本文提供的MATLAB代码FAST_NLM_II.m实现此算法,并包含必要的参数设置、相似性计算、加权平均和图像更新步骤。了解并应用此代码是学习和进一步改进非局部均值滤波技术的基础。1.
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 【字节跳动】数据挖掘面试题0010:解释全国人均收入下降,各省份人均收入增加的现象,属于辛普森悖论(开放性问题)
言析数智
数据挖掘常见面试题辛普森悖论局部与整体分析差异归因数据分析面试题
文章大纲一、辛普森悖论的核心定义二、现象成因:加权平均中的“权重偏移”三、数学逻辑与案例说明1.数学表达式2.具体案例四、辛普森悖论的本质:忽略“混杂因素”的影响五、生活中常见的辛普森悖论案例及应对策略1.医疗疗法效果评估2.大学录取率的性别偏差3.篮球运动员投篮效率4.公司员工绩效与部门规模如何利用辛普森悖论?(数据分析中的价值)六、总结全国人均收入下降而各省份人均收入增加的现象,确实属于辛普森
- 装配式建筑4.0:当房子像汽车一样被“智造”
资讯新鲜事
人工智能
传统建筑方式,如同手工打造艺术品一般,大部分工作依赖现场施工,工人在建筑工地进行混凝土浇筑、砖块堆砌、钢筋绑扎等繁杂工作。这种方式受天气、工人技术水平等因素影响极大,不仅施工周期漫长,质量也参差不齐。据统计,传统建筑项目因天气延误工期的情况每年平均达30天以上。随着时代发展,装配式建筑应运而生。早期的装配式建筑,可看作是传统建筑的“改良版”,它将部分构件在工厂预制,再运输到现场组装,一定程度上提高
- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV的CUDA模块(cudev)中的一个设备端内联函数,用于高效地计算两个uint类型值的带权重平均值。该函数返回两个无符号整数a和b的加权平均值,权重为:return(a*3+b)/4;函数原型__device____forceinline__uintc
- 【ARM AMBA AXI 入门 5.1 - QoS是什么?QoS是怎么工作的? 】
主公讲 ARM
#ARMAMBAAXI系列QoS是什么?QoS怎么工作的?AXIQoS
请阅读【嵌入式及芯片开发学必备专栏】转自:揭秘数通知识:QoS是什么?QoS是怎么工作的?(一)文章目录QoS概述综合服务和差分服务QoS工具报文分类报文标记流量监管和整形工具拥塞管理工具拥塞避免工具队列策略FIFO(先进先出队列,FirstInFirstOutQueue)PriorityQueue(优先队列PQ)Weighted-fairQueue(加权平均队列WFQ)丢弃策略我们在学习嵌入的时
- Python 训练营打卡 Day 46
2401_86382089
Python打卡python
通道注意力一、什么是注意力注意力机制是一种让模型学会「选择性关注重要信息」的特征提取器,就像人类视觉会自动忽略背景,聚焦于图片中的主体(如猫、汽车)。transformer中的叫做自注意力机制,他是一种自己学习自己的机制,他可以自动学习到图片中的主体,并忽略背景。我们现在说的很多模块,比如通道注意力、空间注意力、通道注意力等等,都是基于自注意力机制的。从数学角度看,注意力机制是对输入特征进行加权求
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- OpenCV 图像操作:颜色识别、替换与水印添加
目录引言代码实现1.导入必要的库2.图像加法3.图像直接相加4.颜色加权加法5.HSV颜色空间转换概念作用6.查找颜色范围对应的像素点7.与运算-生成掩膜8.添加水印9.主函数总结引言在计算机视觉领域,OpenCV是一个强大的库,提供了丰富的图像操作功能。本文将详细介绍如何使用OpenCV进行图像加法、颜色加权加法、HSV颜色空间转换、颜色范围查找、与运算生成掩膜以及添加水印等操作,并给出相应的P
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- Linux桌面需要强制访问控制,闲话Linux系统安全(二)——强制访问控制(MAC)
安全秘笈第二式——不安全的特殊权限和强制访问控制(MAC)在DAC的机制中,不管是所有权加权限的管理办法,还是文件系统访问控制列表(facl),都是非常强大的访问控制机制,均可以对文件资源进行比较有效的访问控制。但DAC的自主性太强,可以说文件资源的安全在很大的程度上取决于使用者个人的意志,因此这种安全似乎就被主观化了。尤其是对于root用户而言,不管是权限和所有权的限制,还是facl的管理控制,
- 面试中有哪些常见的手撕代码题?
Try,多训练
面试算法面试java算法
目前共有下面这些问题详细的解答写三种单例模式的实现方式编号为1-n的循环报1-3,报道3的出列,求最后一人的编号写两个线程打印1-n,一个线程打印奇数,一个线程打印偶数LRU缓存实现用Java实现栈加权轮询算法的实现死锁快速排序生产者和消费者
- 红外小目标检测算法RIPI
hie98894
目标检测目标跟踪机器学习
红外小目标检测算法RIPI,基于红外块图像,张量加权,PCADENTIST-master/algorithms/detection/NIPPS/demo_generate_nipps_data.m,1244DENTIST-master/algorithms/detection/NIPPS/nipps.m,2649DENTIST-master/algorithms/detection/NIPPS/R
- ubuntu下使用串口
三、串口权限问题Linux串口是默认普通用户没有读写权限的,每次开机后对串口读写都要附加权限sudochmod666/dev/ttyUSB0但对于需要开机自动运行的程序就很麻烦了,所以可以设置永久加权打开下面的文件远程的话要把gedit换成vi或nano等。这个文件本来是不存在的,只不过编辑器打开不存在的文件会自动创建。70-usb-serial.rules文件名可以自定义,但必须以.rules结
- day49
m0_62568655
python训练营python
空间注意力模块其核心思路是:对输入的特征图进行处理,生成一个与特征图尺寸相同的空间注意力权重图(每个位置的权重表示该位置的重要程度),然后将权重图与原始特征图进行逐元素相乘,使重要空间位置的特征得到增强,不重要的被弱化。CBAM中的空间注意力模块:•输入经过通道注意力加权后的特征图。•对特征图沿通道维度进行最大池化和平均池化,得到两个单通道特征图(分别保留通道维度的最大响应和平均响应)。•将两个单
- 【大模型面试必备】130道大模型问题深度解析,附详细答案,非常详细收藏这一篇就够了!
大模型学习
大模型架构数据库langchain人工智能面试
Attention1、讲讲对Attention的理解?Attention机制是一种在处理时序相关问题的时候常用的技术,*主要用于处理序列数据。*核心思想:在处理序列数据时,网络应该更关注输入中的重要部分,而忽略不重要的部分,它通过学习不同部分的权重,将输入的序列中的重要部分显式地加权,从而使得模型可以更好地关注与输出有关的信息。在序列建模任务中,比如机器翻译、文本摘要、语言理解等,输入序列的不同部
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- day043-负载均衡算法与高可用keepalived
孙克旭
老男孩教育Linux运维99期负载均衡算法运维linux
文章目录0.老男孩思想-运维能为公司创造的价值1.负载均衡轮询算法1.1加权轮询1.2ip哈希1.3url哈希2.负载均衡模块指令补充3.高可用4.keepalived4.1部署keepalived服务4.2脑裂故障4.2.1脑裂故障常见原因4.2.2脑裂故障解决方法5.思维导图0.老男孩思想-运维能为公司创造的价值省钱:服务器设备、机房带宽、云主机云服务减少CDN流量优化、架构改造,当流量增加时
- spring05-Spring核心:AOP面向切面编程
ruleslol
springspring
一、什么是AOP?AOP是为了解决“横切关注点”问题的一种编程范式。在一个项目中,有很多功能不是业务核心逻辑,但又会反复出现在多个地方,例如:日志记录权限校验登录状态检查统计耗时异常处理这些逻辑与“业务方法”不在一个维度上,但又必须“附着在”业务方法上。AOP就是用来把这些“通用功能”抽出来,统一管理和复用的。1、案例背景有一个登录流程,希望在不修改源代码的情况下,添加权限判断模块,使得用户在校验
- Spring Cloud Ribbon核心负载均衡算法详解
代码的余温
springcloudribbon负载均衡
Ribbon作为SpringCloud生态中的客户端负载均衡工具,提供多种动态负载均衡算法,根据后端服务状态智能分配请求。其核心算法及适用场景如下:一、Ribbon负载均衡算法算法名称工作原理引用来源轮询(RoundRobinRule)按服务列表顺序依次分发请求,实现均匀分摊负载随机(RandomRule)从可用服务列表中随机选择一个实例处理请求加权响应时间(WeightedResponseTim
- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- Selenium自动化测试实战:从入门到精通(附真实案例)
文章目录一、为什么选择Selenium?1.1环境准备三步走二、实战案例:电商网站登录测试2.1基础版脚本2.2进阶技巧三、高级应用:动态数据抓取四、文件上传的终极解决方案4.1改良版代码五、常见问题排雷指南六、最佳实践建议七、总结一、为什么选择Selenium?(敲黑板)在自动化测试领域,Selenium绝对是当之无愧的王者!它支持多种浏览器(Chrome/Firefox/Edge等)、跨平台运
- 一些并发常见的问题
一入JAVA毁终身
学习记录java算法开发语言
一.现在有A,B,C三个线程如何同时进行,在并发情况下如何依次进行,如何保证有序交替执行三种同步工具countdownlatch,cylicBarrier,Semaphorecountdownlatch:类似于一个起跑线,所有来的线程到这先等待,到齐后倒计时一起跑cylicBarrier:类似与一个大巴,里面有许多的座位,等到所有的人都上车以后才开始跑Semaphore:信号量,类似于给线程加权,
- GIF&DDE
qq_39573780
红外图像处理计算机视觉算法
红外图像动态范围压缩GIF&DDE本文主要介绍了一种高动态范围图像转化为8位可视图像的方法,根据论文[[1]][id]总结实现算法流程图1:算法流程图步骤:使用导向滤波将图像分为基础层和细节层,基础层表示图像的整体结构信息,细节层表示图像的细节纹理信息。对基础层使用直方图投影操作,将图像的动态范围从[0,65535]映射到[0,255]对细节层使用增益掩膜进行增强对基础层和细节层加权求和得到输出图
- 谷歌开源音乐生成模型速览:magenta-realtime
Open-source-AI
前沿开源人工智能语言模型音视频算法音乐生成
MagentaRealTime模型一、模型概述MagentaRealTime是由GoogleDeepMind开发的开源音乐生成模型,基于MusicFXDJ和LyriaRealTime同样的研究技术构建。它能够通过文本提示、音频示例或多种文本提示及音频示例的加权组合来持续生成音乐音频,在资源有限的环境中(如现场表演或免费ColabTPU)也能部署,支持实时、连续的音乐音频生成。二、使用条款代码库基于
- Transformer 中 QKV 流向全解析(含注意力机制箭头图示)
Accelemate
transformer人工智能深度学习
QKV是什么?在Attention机制中,我们通过Query(查询)与一组Key-Value(键-值)对计算注意力权重,然后用这些权重对Value进行加权求和,从而输出当前时刻关注上下文的结果。Transformer中注意力模块分布Transformer结构中含有三种注意力机制,每个机制都会涉及Q、K、V的构建和使用:编码器自注意力(EncoderSelf-Attention)解码器自注意力(De
- Cilium动手实验室: 精通之旅---32.Getting Started with the Isovalent Load Balancer
上海运维Q先生
CiliumCilium云原生k8s
Cilium动手实验室:精通之旅---32.GettingStartedwiththeIsovalentLoadBalancer1.IsovalentLoadBalancer1.1环境确认1.2多租户1.3配置VIP1.4配置Service1.5配置后端1.6配置服务IP1.7BGP配置1.8测试Service1.9添加后端1.10再次测试2.HTTP支持2.1vHost支持2.2加权后端2.3持
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持