二、示例长廊(2.2 旋转的3D猴子脑袋)

2.2旋转的3D猴子脑袋

这个例子展示了使用OpenGL来显示一个旋转的猴子脑袋。主要内容包括加载一个Blender OBJ文件、使用GLSL(OpenGL's Shading Language)写着色器和使用定制的回调函数。

monkey.obj文件是一个由Blender软件导出的OBJ文件。这个文件是文本文件,列出了定点和猴子的脸,并使用objloader.py类来加载。simple.glsl文件是由GLSL语言写的一个顶点和片段的着色器。

3Drendering/main.py文件列表:

'''
3D Rotating Monkey Head
========================

This example demonstrates using OpenGL to display a rotating monkey head. This
includes loading a Blender OBJ file, shaders written in OpenGL's Shading
Language (GLSL), and using scheduled callbacks.

The monkey.obj file is an OBJ file output from the Blender free 3D creation
software. The file is text, listing vertices and faces and is loaded
using a class in the file objloader.py. The file simple.glsl is
a simple vertex and fragment shader written in GLSL.
'''

from kivy.app import App
from kivy.clock import Clock
from kivy.core.window import Window
from kivy.uix.widget import Widget
from kivy.resources import resource_find
from kivy.graphics.transformation import Matrix
from kivy.graphics.opengl import *
from kivy.graphics import *
from objloader import ObjFile


class Renderer(Widget):
    def __init__(self, **kwargs):
        self.canvas = RenderContext(compute_normal_mat=True)
        self.canvas.shader.source = resource_find('simple.glsl')
        self.scene = ObjFile(resource_find("monkey.obj"))
        super(Renderer, self).__init__(**kwargs)
        with self.canvas:
            self.cb = Callback(self.setup_gl_context)
            PushMatrix()
            self.setup_scene()
            PopMatrix()
            self.cb = Callback(self.reset_gl_context)
        Clock.schedule_interval(self.update_glsl, 1 / 60.)

    def setup_gl_context(self, *args):
        glEnable(GL_DEPTH_TEST)

    def reset_gl_context(self, *args):
        glDisable(GL_DEPTH_TEST)

    def update_glsl(self, *largs):
        asp = self.width / float(self.height)
        proj = Matrix().view_clip(-asp, asp, -1, 1, 1, 100, 1)
        self.canvas['projection_mat'] = proj
        self.canvas['diffuse_light'] = (1.0, 1.0, 0.8)
        self.canvas['ambient_light'] = (0.1, 0.1, 0.1)
        self.rot.angle += 1

    def setup_scene(self):
        Color(1, 1, 1, 1)
        PushMatrix()
        Translate(0, 0, -3)
        self.rot = Rotate(1, 0, 1, 0)
        m = list(self.scene.objects.values())[0]
        UpdateNormalMatrix()
        self.mesh = Mesh(
            vertices=m.vertices,
            indices=m.indices,
            fmt=m.vertex_format,
            mode='triangles',
        )
        PopMatrix()


class RendererApp(App):
    def build(self):
        return Renderer()

if __name__ == "__main__":
    RendererApp().run()

3Drendering/objloader.py文件

class MeshData(object):
    def __init__(self, **kwargs):
        self.name = kwargs.get("name")
        self.vertex_format = [
            (b'v_pos', 3, 'float'),
            (b'v_normal', 3, 'float'),
            (b'v_tc0', 2, 'float')]
        self.vertices = []
        self.indices = []

    def calculate_normals(self):
        for i in range(len(self.indices) / (3)):
            fi = i * 3
            v1i = self.indices[fi]
            v2i = self.indices[fi + 1]
            v3i = self.indices[fi + 2]

            vs = self.vertices
            p1 = [vs[v1i + c] for c in range(3)]
            p2 = [vs[v2i + c] for c in range(3)]
            p3 = [vs[v3i + c] for c in range(3)]

            u, v = [0, 0, 0], [0, 0, 0]
            for j in range(3):
                v[j] = p2[j] - p1[j]
                u[j] = p3[j] - p1[j]

            n = [0, 0, 0]
            n[0] = u[1] * v[2] - u[2] * v[1]
            n[1] = u[2] * v[0] - u[0] * v[2]
            n[2] = u[0] * v[1] - u[1] * v[0]

            for k in range(3):
                self.vertices[v1i + 3 + k] = n[k]
                self.vertices[v2i + 3 + k] = n[k]
                self.vertices[v3i + 3 + k] = n[k]


class ObjFile:
    def finish_object(self):
        if self._current_object is None:
            return

        mesh = MeshData()
        idx = 0
        for f in self.faces:
            verts = f[0]
            norms = f[1]
            tcs = f[2]
            for i in range(3):
                #get normal components
                n = (0.0, 0.0, 0.0)
                if norms[i] != -1:
                    n = self.normals[norms[i] - 1]

                #get texture coordinate components
                t = (0.0, 0.0)
                if tcs[i] != -1:
                    t = self.texcoords[tcs[i] - 1]

                #get vertex components
                v = self.vertices[verts[i] - 1]

                data = [v[0], v[1], v[2], n[0], n[1], n[2], t[0], t[1]]
                mesh.vertices.extend(data)

            tri = [idx, idx + 1, idx + 2]
            mesh.indices.extend(tri)
            idx += 3

        self.objects[self._current_object] = mesh
        #mesh.calculate_normals()
        self.faces = []

    def __init__(self, filename, swapyz=False):
        """Loads a Wavefront OBJ file. """
        self.objects = {}
        self.vertices = []
        self.normals = []
        self.texcoords = []
        self.faces = []

        self._current_object = None

        material = None
        for line in open(filename, "r"):
            if line.startswith('#'):
                continue
            if line.startswith('s'):
                continue
            values = line.split()
            if not values:
                continue
            if values[0] == 'o':
                self.finish_object()
                self._current_object = values[1]
            #elif values[0] == 'mtllib':
            #    self.mtl = MTL(values[1])
            #elif values[0] in ('usemtl', 'usemat'):
            #    material = values[1]
            if values[0] == 'v':
                v = list(map(float, values[1:4]))
                if swapyz:
                    v = v[0], v[2], v[1]
                self.vertices.append(v)
            elif values[0] == 'vn':
                v = list(map(float, values[1:4]))
                if swapyz:
                    v = v[0], v[2], v[1]
                self.normals.append(v)
            elif values[0] == 'vt':
                self.texcoords.append(map(float, values[1:3]))
            elif values[0] == 'f':
                face = []
                texcoords = []
                norms = []
                for v in values[1:]:
                    w = v.split('/')
                    face.append(int(w[0]))
                    if len(w) >= 2 and len(w[1]) > 0:
                        texcoords.append(int(w[1]))
                    else:
                        texcoords.append(-1)
                    if len(w) >= 3 and len(w[2]) > 0:
                        norms.append(int(w[2]))
                    else:
                        norms.append(-1)
                self.faces.append((face, norms, texcoords, material))
        self.finish_object()


def MTL(filename):
    contents = {}
    mtl = None
    return
    for line in open(filename, "r"):
        if line.startswith('#'):
            continue
        values = line.split()
        if not values:
            continue
        if values[0] == 'newmtl':
            mtl = contents[values[1]] = {}
        elif mtl is None:
            raise ValueError("mtl file doesn't start with newmtl stmt")
        mtl[values[0]] = values[1:]
    return contents

3Drendering/simple.glsl文件

/* simple.glsl

simple diffuse lighting based on laberts cosine law; see e.g.:
    http://en.wikipedia.org/wiki/Lambertian_reflectance
    http://en.wikipedia.org/wiki/Lambert%27s_cosine_law
*/
---VERTEX SHADER-------------------------------------------------------
#ifdef GL_ES
    precision highp float;
#endif

attribute vec3  v_pos;
attribute vec3  v_normal;

uniform mat4 modelview_mat;
uniform mat4 projection_mat;

varying vec4 normal_vec;
varying vec4 vertex_pos;

void main (void) {
    //compute vertex position in eye_sapce and normalize normal vector
    vec4 pos = modelview_mat * vec4(v_pos,1.0);
    vertex_pos = pos;
    normal_vec = vec4(v_normal,0.0);
    gl_Position = projection_mat * pos;
}


---FRAGMENT SHADER-----------------------------------------------------
#ifdef GL_ES
    precision highp float;
#endif

varying vec4 normal_vec;
varying vec4 vertex_pos;

uniform mat4 normal_mat;

void main (void){
    //correct normal, and compute light vector (assume light at the eye)
    vec4 v_normal = normalize( normal_mat * normal_vec ) ;
    vec4 v_light = normalize( vec4(0,0,0,1) - vertex_pos );
    //reflectance based on lamberts law of cosine
    float theta = clamp(dot(v_normal, v_light), 0.0, 1.0);
    gl_FragColor = vec4(theta, theta, theta, 1.0);
}

你可能感兴趣的:(二、示例长廊(2.2 旋转的3D猴子脑袋))