案例6:加氢脱硫(HDS)和进料混合控制-2

双击“HDS”子系统块将视图切换到另一个视图以显示内部子系统搭建模块。连接“HDS”子系统和“Blender”子系统的InPort块也可以被重命名。这个阶段的视图如下:

案例6:加氢脱硫(HDS)和进料混合控制-2_第1张图片

如下所示,主视图减少到由一条线连接的两个子系统块。

案例6:加氢脱硫(HDS)和进料混合控制-2_第2张图片

控制器设计
关闭GMB后,编译控制器模型以自动生成不可测干扰(如模型误差来源)。
对于控制器设计,建立一个新控制器并将其命名为“Default”。具有默认指定变量的一个子控制器被创建。若要重命名子控制器,前往sub-controller node(子控制器节点)并在Summary(概要)选项卡视图中修改其名称。
我们的设计目标是将HDS变量分配到一个叫HDS Reactor的(新)子控制器。为了实现这一点,前往Scope Definition(范围界定)窗口并按照给定的程序执行:
1、 单击New以创建HDS Reactor子控制器;
2、 单击Blend HDS 子控制器并开始分配HDS变量:TRC, Feed 和 SULPHUR。

案例6:加氢脱硫(HDS)和进料混合控制-2_第3张图片

需要注意的是SULPHUR是高亮为蓝色的,因为它与已经分配到Blend HDS 子控制器中的SULPHUR IN变量有关系。
3、 为HDS Reactor子控制器完成变量赋值。

案例6:加氢脱硫(HDS)和进料混合控制-2_第4张图片

4、 使用Up和Down按钮以确保 Blend HDS 子控制器是处于动态子控制器问题序列的第一位(顶部位置)来执行的。
5、 选择Blend HDS选项并将其定义为混合子控制器。注意对于混合子控制器,所有的MVs和DVs都是比值。

案例6:加氢脱硫(HDS)和进料混合控制-2_第5张图片

6、 为进料混合子控制器定义Outputs(输出)和Weights(权重)。进料搅拌器需要控制Density(密度) 和T95。SULPHUR IN是控制柴油SULPHUR的一个中间变量,其本身并不被控制。

案例6:加氢脱硫(HDS)和进料混合控制-2_第6张图片

7、 定义HDS Reactor子控制器,其中仅SULPHUR CV是被控制的。

案例6:加氢脱硫(HDS)和进料混合控制-2_第7张图片

8、 使用默认的压缩点。在压缩点图中查看SULPHUR阶跃响应。
9、 定义经济函数以最大化Feed(进料)。

案例6:加氢脱硫(HDS)和进料混合控制-2_第8张图片

系数-1.0认定SMOCPro执行定义的经济函数最小化,因此最小化-Feed即等同于最大化Feed。最后,编译控制器。
仿真
仿真的目的是为了逐渐熟悉运行不同的子控制器,并通过变量列表定义不同的方式来分析其性能。


原文:
Double-clicking on the “HDS” sub-system block toggles the view to another tab view displaying the internal sub-system building blocks. The InPort block linking the “HDS” sub-system to the “Blender” sub-system can also be renamed. At this stage, the view is as follows.
The main view is reduced to two sub-system blocks connected by a single link as shown below.
Controller Design
After closing the GMB, compile the controller model to automatically generate the unmeasured disturbances (as sources of modeling errors).
For the controller design, create a new controller and call it “Default.” A sub-controller is created with default assignment of variables. To rename a sub-controller, go to the sub-controller node and modify its name in the Summary tab view.
Our design target is to assign the HDS variables into a (new) second sub-controller called HDS Reactor. To accomplish this, go to the Scope Definition window and follow the given procedure:

  1. Click New to create the HDS Reactor sub-controller.
  2. Click on the Blend HDS sub-controller and start un-assigning the HDS variables: TRC, Feed and SULPHUR.
    Note that SULPHUR is highlighted in blue because it has a relationship with a variable already assigned in the Blend HDS sub-controller: SULPHUR IN.
  3. Complete variable assignment for HDS Reactor sub-controller.
  4. Use the Up and Down buttons to ensure that the Blend HDS sub-controller is executed first (top position) in the sequence of dynamic sub-controller problems.
  5. Select the Blend HDS tab and define it as a blending sub-controller. Note that for a blending sub-controller, all MVs and DVs are ratios.
  6. Define the Outputs and Weights for the feed blending sub-controller. The feed blender controls Density and T95. The SULPHUR IN is an intermediate variable to control the gasoil SULPHUR and is not controlled in itself.
  7. Define the HDS Reactor sub-controller where only the SULPHUR CV is controlled.
  8. Use default compaction points. View SULPHUR step responses in the Compaction Points plot.
  9. Define an economic function to maximize the Feed.
    The factor -1.0 accounts for the fact that SMOCPro performs a minimization of the defined economic functions, and as such minimizing –Feed is equal to maximizing Feed. Finally, compile the controller.
    Simulation
    The objective of the simulation is to become familiar with running a controller with different sub-controllers and to customize different ways to analyze its performance through Variable Lists.

2016.6.10

你可能感兴趣的:(案例6:加氢脱硫(HDS)和进料混合控制-2)