互联网UV,PU,TopN统计

1. UV、PV、TopN概念

1.1 UV(unique visitor) 即独立访客数

  指访问某个站点或点击某个网页的不同IP地址的人数。在同一天内,UV只记录第一次进入网站的具有独立IP的访问者,在同一天内再次访问该网站则不计数。UV提供了一定时间内不同观众数量的统计指标,而没有反应出网站的全面活动。

1.2 PV(page view)页面浏览量或点击量

  页面浏览量或点击量,是衡量一个网站或网页用户访问量。具体的说,PV值就是所有访问者在24小时(0点到24点)内看了某个网站多少个页面或某个网页多少次。PV是指页面刷新的次数,每一次页面刷新,就算做一次PV流量。

1.3 TopN

  顾名思义,就是获取前10或前N的数据。

2. 离线计算UV、PV、TopN

  这里主要使用hive或者MapReduce计算。

2.1 统计每个时段网站的PV和UV

hive> select date,hour,count(url) pv, count(distinct guid) uv from track_log group by date, hour;

date    hour    pv    uv
20160624    18    64972    23938
20160624    19    61162    22330

2.2 hive中创建结果表

create table db_track_daily_hour_visit(
    date string,
    hour string,
    pv string,
    uv string
)
row format delimited fields terminated by "\t";

2.3 结果写入Hive表(这里最好使用shell脚本去做)

  结果步骤2.1与2.2,把2.1产生的结果数据写入到2.2的结果表中

hive> insert overwrite table db_track_daily_hour_visit select date, hour, count(url), pv, count(distinct guid) uv from track_log group by date, hour;

2.4 创建crontab命令,每天定时调度2.3的shell脚本

2.5 mysql中创建一张表,永久存储分析结果

mysql> create table visit(
    -> date int,
    -> hour int,
    -> pv bigint,
    -> uv bigint          
);

2.6 利用sqoop导入数据到Mysql

  注:以下代码也可以放到crontab里面每天自动执行

$ bin/sqoop --options-file job1/visit.opt
mysql> select * from visit;

+----------+------+-------+-------+
| date     | hour | pv    | uv    |
+----------+------+-------+-------+
| 20160624 |   18 | 64972 | 23938 |
| 20160624 |   19 | 61162 | 22330 |
+----------+------+-------+-------+

3. 实时计算UV、PV、TopN

   在实时流式计算中,最重要的是在任何情况下,消息不重复、不丢失,即Exactly-once。本文以Kafka->Spark Streaming->Redis为例,一方面说明一下如何做到Exactly-once,另一方面说明一下如何计算实时去重指标的。

互联网UV,PU,TopN统计_第1张图片

3.1 关于数据源

  日志格式为:

  2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=DEIBAH&siteid=3

  2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=GLLIEG&siteid=3

  2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJMEC&siteid=8

  2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HMGBDE&siteid=3

  2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJFLA&siteid=4

  2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=JCEBBC&siteid=9

  2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=KJLAKG&siteid=8

  2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=FHEIKI&siteid=3

  2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IGIDLB&siteid=3

  2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IIIJCD&siteid=5

  日志是由测试程序模拟产生的,字段之间由|~|分隔。pcid为计算机pc的id,siteid为网站id

3.2 实时计算需求

  分天、分小时PV、UV;

  分天、分小时、分网站(siteid)PV、UV;

3.3 Spark Streaming消费Kafka数据

  在Spark Streaming中消费Kafka数据,保证Exactly-once的核心有三点:

  ①使用Direct方式连接Kafka;

  ②自己保存和维护Offset;

  ③更新Offset和计算在同一事务中完成;

  

  后面的Spark Streaming程序,主要有以下步骤:

  ①启动后,先从Redis中获取上次保存的Offset,Redis中的key为“topic_partition”,即每个分区维护一个Offset;

  ②使用获取到的Offset,创建DirectStream;

  ③在处理每批次的消息时,利用Redis的事务机制,确保在Redis中指标的计算和Offset的更新维护,在同一事务中完成。只有这两者同步,才能真正保证消息的Exactly-once。

./spark-submit \
--class com.lxw1234.spark.TestSparkStreaming \
--master local[2] \
--conf spark.streaming.kafka.maxRatePerPartition=20000 \
--jars /data1/home/dmp/lxw/realtime/commons-pool2-2.3.jar,\
/data1/home/dmp/lxw/realtime/jedis-2.9.0.jar,\
/data1/home/dmp/lxw/realtime/kafka-clients-0.11.0.1.jar,\
/data1/home/dmp/lxw/realtime/spark-streaming-kafka-0-10_2.11-2.2.1.jar \
/data1/home/dmp/lxw/realtime/testsparkstreaming.jar \
--executor-memory 4G \
--num-executors 1

  在启动Spark Streaming程序时候,有个参数最好指定:

  spark.streaming.kafka.maxRatePartition=20000(每秒钟从topic的每个partition最多消费的消息条数)

  如果程序第一次运行,或者因为某种原因暂停了很久重新启动时候,会积累很多消息,如果这些消息同时被消费,很有可能会因为内存不够而挂掉,因此,需要根据实际的数据量大小,以及批次的间隔时间来设置该参数,以限定批次的消息量。

  如果该参数设置20000,而批次间隔时间未10秒,那么每个批次最多从Kafka中消费20万消息。

3.4 Redis中的数据模型

  ① 分小时、分网站PV

    普通K-V结构,计算时候使用incr命令递增,

    Key为 “site_pv_网站ID_小时”,

    如:site_pv_9_2018-02-21-00、site_pv_10_2018-02-12-01

  ② 分小时PV、分天PV(分天的暂无)

    普通K-V结构,计算时候使用incr命令递增,

    Key为 “pv_小时”,如:pv_2018-02-21-14、pv_2018-02-22-03

    该数据模型用于计算按小时及按天总PV。

  ③ 分小时、分网站UV

    Set结构,计算时候使用sadd命令添加,

    Key为 “site_uv_网站ID_小时”,如:site_uv_8_2018-02-21-12、site_uv_6_2019-09-12-09

    该数据模型用户计算按小时和网站的总UV(获取时候使用SCARD命令获取Set元素个数

  ④ 分小时UV、分天UV(分天的暂无)

    Set结构,计算时候使用sadd命令添加,

    Key为 “uv_小时”,如:uv_2018-02-21-08、uv_2018-02-20-09

    该数据模型用户计算按小时及按天的总UV(获取时候使用SCARD命令获取Set元素个数

  注意:这些Key对应的时间,均有实际消息中的第一个字段(时间)而定。

3.5 代码程序

  maven依赖包


    
      org.apache.spark
      spark-core_2.11
      ${spark.version}
    
    
      org.apache.hadoop
      hadoop-client
      ${hadoop.version}
    

    
      org.apache.spark
      spark-sql_2.11
      ${spark.version}
    

    
    
      org.apache.commons
      commons-pool2
      2.3
    
    
      org.apache.spark
      spark-streaming_2.11
      ${spark.version}
    
    
      redis.clients
      jedis
      2.9.0
    
    
      org.apache.kafka
      kafka-clients
      2.1.0
    
    
      org.apache.kafka
      kafka_2.11
      2.1.0
    

    
      org.apache.spark
      spark-streaming-kafka-0-10_2.11
      2.4.3
    
    

    
      ch.ethz.ganymed
      ganymed-ssh2
      262
    

    
      org.scala-lang
      scala-xml
      2.11.0-M4
    
  

  kafka偏移量管理工具类KafkaOffsetUtils:

package com.swordfall.common

import java.time.Duration
import org.apache.kafka.clients.consumer.{Consumer, ConsumerConfig, KafkaConsumer, NoOffsetForPartitionException}
import org.apache.kafka.common.TopicPartition
import scala.collection.JavaConversions._
import scala.collection.mutable

object KafkaOffsetUtils {

  /**
    * 获取最小offset
    *
    * @param consumer   消费者
    * @param partitions topic分区
    * @return
    */
  def getEarliestOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = {
    consumer.seekToBeginning(partitions)
    partitions.map(tp => tp -> consumer.position(tp)).toMap
  }

  /**
    * 获取最小offset
    * Returns the earliest (lowest) available offsets, taking new partitions into account.
    *
    * @param kafkaParams kafka客户端配置
    * @param topics      获取offset的topic
    */
  def getEarliestOffsets(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = {
    val newKafkaParams = mutable.Map[String, Object]()
    newKafkaParams ++= kafkaParams
    newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest")
    val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams)
    consumer.subscribe(topics)
    val parts = consumer.assignment()
    consumer.seekToBeginning(parts)
    consumer.pause(parts)
    val offsets = parts.map(tp => tp -> consumer.position(tp)).toMap
    consumer.unsubscribe()
    consumer.close()
    offsets
  }

  /**
    * 获取最大offset
    *
    * @param consumer   消费者
    * @param partitions topic分区
    * @return
    */
  def getLatestOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = {
    consumer.seekToEnd(partitions)
    partitions.map(tp => tp -> consumer.position(tp)).toMap
  }

  /**
    * 获取最大offset
    * Returns the latest (highest) available offsets, taking new partitions into account.
    *
    * @param kafkaParams kafka客户端配置
    * @param topics      需要获取offset的topic
    **/
  def getLatestOffsets(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = {
    val newKafkaParams = mutable.Map[String, Object]()
    newKafkaParams ++= kafkaParams
    newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest")
    val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams)
    consumer.subscribe(topics)
    val parts = consumer.assignment()
    consumer.seekToEnd(parts)
    consumer.pause(parts)
    val offsets = parts.map(tp => tp -> consumer.position(tp)).toMap
    consumer.unsubscribe()
    consumer.close()
    offsets
  }

  /**
    * 获取消费者当前offset
    *
    * @param consumer   消费者
    * @param partitions topic分区
    * @return
    */
  def getCurrentOffsets(consumer: Consumer[_, _], partitions: Set[TopicPartition]): Map[TopicPartition, Long] = {
    partitions.map(tp => tp -> consumer.position(tp)).toMap
  }

  /**
    * 获取offsets
    *
    * @param kafkaParams kafka参数
    * @param topics      topic
    * @return
    */
  def getCurrentOffset(kafkaParams: Map[String, Object], topics: Iterable[String]): Map[TopicPartition, Long] = {
    val offsetResetConfig = kafkaParams.getOrElse(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest").toString.toLowerCase()
    val newKafkaParams = mutable.Map[String, Object]()
    newKafkaParams ++= kafkaParams
    newKafkaParams.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "none")
    val consumer: KafkaConsumer[String, Array[Byte]] = new KafkaConsumer[String, Array[Byte]](newKafkaParams)
    consumer.subscribe(topics)
    val notOffsetTopicPartition = mutable.Set[TopicPartition]()

    try {
      consumer.poll(Duration.ofMillis(0))
    } catch {
      case ex: NoOffsetForPartitionException  =>
        println(s"consumer topic partition offset not found:${ex.partition()}")
        notOffsetTopicPartition.add(ex.partition())
    }

    val parts = consumer.assignment().toSet
    consumer.pause(parts)
    val topicPartition = parts.diff(notOffsetTopicPartition)
    //获取当前offset
    val currentOffset = mutable.Map[TopicPartition, Long]()
    topicPartition.foreach(x => {
      try {
        currentOffset.put(x, consumer.position(x))
      } catch {
        case ex: NoOffsetForPartitionException =>
          println(s"consumer topic partition offset not found:${ex.partition()}")
          notOffsetTopicPartition.add(ex.partition())
      }
    })
    //获取earliiestOffset
    val earliestOffset = getEarliestOffsets(consumer, parts)
    earliestOffset.foreach(x => {
      val value = currentOffset.get(x._1)
      if (value.isEmpty){
        currentOffset(x._1) = x._2
      }else if (value.get < x._2){
        println(s"kafka data is lost from partition:${x._1} offset ${value.get} to ${x._2}")
        currentOffset(x._1) = x._2
      }
    })
    // 获取lastOffset
    val lateOffset = if (offsetResetConfig.equalsIgnoreCase("earliest")){
      getLatestOffsets(consumer, topicPartition)
    }else {
      getLatestOffsets(consumer, parts)
    }

    lateOffset.foreach(x => {
      val value = currentOffset.get(x._1)
      if (value.isEmpty || value.get > x._2){
        currentOffset(x._1) = x._2
      }
    })
    consumer.unsubscribe()
    consumer.close()
    currentOffset.toMap
  }
}

  Redis资源管理工具类InternalRedisClient:

package com.swordfall.streamingkafka

import org.apache.commons.pool2.impl.GenericObjectPoolConfig
import redis.clients.jedis.JedisPool

/**
  * @Author: Yang JianQiu
  * @Date: 2019/9/10 0:19
  */
object InternalRedisClient extends Serializable {

  @transient private var pool: JedisPool = null

  def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int): Unit ={
      makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle, true, false, 10000)
  }

  def makePool(redisHost: String, redisPort: Int, redisTimeout: Int, maxTotal: Int, maxIdle: Int, minIdle: Int, testOnBorrow: Boolean, testOnReturn: Boolean, maxWaitMills: Long): Unit ={
    if (pool == null){
      val poolConfig = new GenericObjectPoolConfig()
      poolConfig.setMaxTotal(maxTotal)
      poolConfig.setMaxIdle(maxIdle)
      poolConfig.setMinIdle(minIdle)
      poolConfig.setTestOnBorrow(testOnBorrow)
      poolConfig.setTestOnReturn(testOnReturn)
      poolConfig.setMaxWaitMillis(maxWaitMills)
      pool = new JedisPool(poolConfig, redisHost, redisPort, redisTimeout)

      val hook = new Thread{
        override def run = pool.destroy()
      }
      sys.addShutdownHook(hook.run)
    }
  }

  def getPool: JedisPool = {
    if (pool != null) pool else null
  }

}

  核心Spark Streaming处理kafka数据,并统计UV、PV到redis里面,同时在redis里面维护kafka偏移量:

package com.swordfall.streamingkafka

import com.swordfall.common.KafkaOffsetUtils
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, HasOffsetRanges, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import redis.clients.jedis.Pipeline

/**
  * 获取topic最小的offset
  */
object SparkStreamingKafka {

  def main(args: Array[String]): Unit = {
    val brokers = "192.168.187.201:9092"
    val topic = "nginx"
    val partition: Int = 0 // 测试topic只有一个分区
    val start_offset: Long = 0L

    // Kafka参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> brokers,
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "test",
      "enable.auto.commit" -> (false: java.lang.Boolean),
      "auto.offset.reset" -> "latest"
    )

    // Redis configurations
    val maxTotal = 10
    val maxIdle = 10
    val minIdle = 1
    val redisHost = "192.168.187.201"
    val redisPort = 6379
    val redisTimeout = 30000
    // 默认db,用户存放Offset和pv数据
    val dbDefaultIndex = 8
    InternalRedisClient.makePool(redisHost, redisPort, redisTimeout, maxTotal, maxIdle, minIdle)

    val conf = new SparkConf().setAppName("SparkStreamingKafka").setIfMissing("spark.master", "local[2]")
    val ssc = new StreamingContext(conf, Seconds(10))

    // 从Redis获取上一次存的Offset
    val jedis = InternalRedisClient.getPool.getResource
    jedis.select(dbDefaultIndex)
    val topic_partition_key = topic + "_" + partition

    val lastSavedOffset = jedis.get(topic_partition_key)
    var fromOffsets: Map[TopicPartition, Long] = null
    if (null != lastSavedOffset){
      var lastOffset = 0L
      try{
        lastOffset = lastSavedOffset.toLong
      }catch{
        case ex: Exception => println(ex.getMessage)
          println("get lastSavedOffset error, lastSavedOffset from redis [" + lastSavedOffset + "]")
          System.exit(1)
      }
      // 设置每个分区起始的Offset
      fromOffsets = Map{ new TopicPartition(topic, partition) -> lastOffset }

      println("lastOffset from redis -> " + lastOffset)
    }else{
      //等于null,表示第一次, redis里面没有存储偏移量,但是可能会存在kafka存在一部分数据丢失或者过期,但偏移量没有记录在redis里面,
      // 偏移量还是按0的话,会导致偏移量范围出错,故需要拿到earliest或者latest的偏移量
      fromOffsets = KafkaOffsetUtils.getCurrentOffset(kafkaParams, List(topic))
    }
    InternalRedisClient.getPool.returnResource(jedis)


    // 使用Direct API 创建Stream
    val stream = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Assign[String, String](fromOffsets.keys.toList, kafkaParams, fromOffsets)
    )

    // 开始处理批次消息
    stream.foreachRDD{
      rdd =>
        val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
        val result = processLogs(rdd)
        println("================= Total " + result.length + " events in this batch ..")

        val jedis = InternalRedisClient.getPool.getResource
        // redis是单线程的,下一次请求必须等待上一次请求执行完成后才能继续执行,然而使用Pipeline模式,客户端可以一次性的发送多个命令,无需等待服务端返回。这样就大大的减少了网络往返时间,提高了系统性能。
        val pipeline: Pipeline = jedis.pipelined()
        pipeline.select(dbDefaultIndex)
        pipeline.multi() // 开启事务

        // 逐条处理消息
        result.foreach{
          record =>

            // 增加网站小时pv
            val site_pv_by_hour_key = "site_pv_" + record.site_id + "_" + record.hour
            pipeline.incr(site_pv_by_hour_key)

            // 增加小时总pv
            val pv_by_hour_key = "pv_" + record.hour
            pipeline.incr(pv_by_hour_key)

            // 使用set保存当天每个小时网站的uv
            val site_uv_by_hour_key = "site_uv_" + record.site_id + "_" + record.hour
            pipeline.sadd(site_uv_by_hour_key, record.user_id)

            // 使用set保存当天每个小时的uv
            val uv_by_hour_key = "uv_" + record.hour
            pipeline.sadd(uv_by_hour_key, record.user_id)
        }

        // 更新Offset
        offsetRanges.foreach{
          offsetRange =>
            println("partition: " + offsetRange.partition + " fromOffset: " + offsetRange.fromOffset + " untilOffset: " + offsetRange.untilOffset)
            val topic_partition_key = offsetRange.topic + "_" + offsetRange.partition
            pipeline.set(topic_partition_key, offsetRange.untilOffset + "")
        }

        pipeline.exec() // 提交事务
        pipeline.sync() // 关闭pipeline

        InternalRedisClient.getPool.returnResource(jedis)
    }

    ssc.start()
    ssc.awaitTermination()
  }

  case class MyRecord(hour: String, user_id: String, site_id: String)

  def processLogs(messages: RDD[ConsumerRecord[String, String]]): Array[MyRecord] = {
    messages.map(_.value()).flatMap(parseLog).collect()
  }

  def parseLog(line: String): Option[MyRecord] = {
    val ary: Array[String] = line.split("\\|~\\|", -1)
    try{
      val hour = ary(0).substring(0, 13).replace("T", "-")
      val uri = ary(2).split("[=|&]", -1)
      val user_id = uri(1)
      val site_id = uri(3)
      return scala.Some(MyRecord(hour, user_id, site_id))
    }catch{
      case ex: Exception => println(ex.getMessage)
    }
    return None
  }

}

4. 总结

【github地址】

https://github.com/SwordfallYeung/SparkStreamingDemo

【参考资料】

http://www.cj318.cn/?p=4

https://blog.csdn.net/liam08/article/details/80155006

http://www.ikeguang.com/2018/08/03/statistic-hive-daily-week-month/

https://dongkelun.com/2018/06/25/KafkaUV/

https://blog.csdn.net/wwwzydcom/article/details/89506227

http://lxw1234.com/archives/2018/02/901.htm

https://blog.csdn.net/qq_35946969/article/details/83654369

 

 

你可能感兴趣的:(互联网UV,PU,TopN统计)