题解 洛谷P4302 【[SCOI2003]字符串折叠】

一眼区间\(dp\),但蒟蒻的我还是调了好久\(qwq\)

【状态设置】

\(f[i][j]\)为子串\([i,j]\)的最短折叠

最后答案为\(f[1][n]\) 废话

【初始化】

\(1\) 首先对于任意的\(i\)必然存在\(f[i][i]=1\)

然后其他的都初始化为\(INF\)即可

\(2\) 因为最后的字符串可能会出现数字,所以不妨考虑用一个数组\(g[x]\)预处理\(x\)的位数\(qwq\)

\(dp\)核心】

对于任意的\(f[i][j]\) \((i < j)\)可以有两种得到方式。

  • 分成两段,两段的最短折叠连在一起构成,即左区间\(+\)右区间

  • 自身构成:找子串\([i,j]\)中的一个循环子串,形如 循环节 左括号 子串 右括号。长度即为即循环节位数\(+2+\)子串长度。

第一种方式,套区间\(dp\)的模板,先枚举出\(len\)\(i\),得到\(j=i+len-1\),再跑一遍\(k\)枚举割点,于是得到:

\(f[i][j]=min(f[i][j],f[i][k]+f[k+1][j])\) \((i \leq k < j)\)

第二种方式,如果子串\([i,k]\)是子串\([i,j]\)中的一个循环子串,则:

\(f[i][j]=min(f[i][j],g[len/l]+2+f[i][k])\) \((l=k-i+1)\)

【代码】

#include
using namespace std;
const int max_n=100+5;
int n,g[max_n],f[max_n][max_n]; 
string st;
bool check(int ll,int rr,int len){//判断是否是循环节 
    for(int i=ll;i<=ll+len-1;i++){
        char ch=st[i];
        for(int j=i;j<=rr;j+=len){
            if(st[j]!=ch)return false;
        }
    }
    return true;
}
int main(){
    ios::sync_with_stdio(false);
    cin>>st;
    n=st.size();st=" "+st;//把字符串变成1~n 
    for(int i=1;i<=9;i++)g[i]=1;
    for(int i=10;i<=99;i++)g[i]=2;
    g[100]=3;//g[x]表示x的位数 
    memset(f,0x3f,sizeof(f));
    for(int i=1;i<=n;i++)f[i][i]=1;//初始化f数组 
    for(int len=1;len<=n;len++){
        for(int i=1;i+len-1<=n;i++){
            int j=i+len-1;//区间DP模板,得到i和j 
            for(int k=i;k

你可能感兴趣的:(题解 洛谷P4302 【[SCOI2003]字符串折叠】)