- 3月份学习任务、工作计划
Kamui_0us
学习
3月18日报名六级3月22日之前收集团日材料3月22日收集五四述职材料3月29日计算解二级学英语:为了六级为了绩点为了大英赛为了雅思接续规划留学计划恶补数学,拉下的慢慢补回来今日学习任务:学习本周的解析几何课程,背六级单词,还有时间可以看看github有关知识
- 大语言模型微调和大语言模型应用区别
AI Echoes
深度学习人工智能自然语言处理
大语言模型微调和大语言模型应用区别微调与应用LLM的区别微调大语言模型(LLM)是指取一个已经预训练好的模型,进一步用特定数据集训练,使其更好地适应某个任务或领域,比如为医疗聊天机器人优化医疗术语理解。应用LLM则是直接使用这些预训练模型来完成任务,如通过提示生成文本或回答问题,无需更改模型本身。研究表明,微调适合需要领域专精的任务,而应用更适合通用任务,效果因模型和任务复杂性而异。学习所需技术栈
- 一篇文章介绍清楚什么是Web自动化智能体?
霍格沃兹测试开发学社
人工智能前端自动化运维人工智能deepseek语言模型开源
Web自动化正逐渐成为提升效率、降低成本的利器。无论是数据抓取、表单填写,还是复杂的业务流程自动化,Web自动化智能体都能轻松应对。那么,这些智能体是如何工作的?它们的核心元素有哪些?今天,我们就来一探究竟!大模型智能体的“大脑”Web自动化智能体的核心驱动力来自于大模型(如ChatGPT、Claude、Ollama)。这些大模型赋予了智能体强大的自然语言理解和任务规划能力。任务理解:智能体能够准
- 【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)
pen-ai
NLP机器学习自然语言处理word人工智能
WordAnalogyTask(词类比任务)定义:WordAnalogyTask是用于评估词向量质量的内在指标(IntrinsicMetric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。示例:在一个理想的词向量空间中,单词之间的关系应该满足如下等式:king−man+woman≈queenking−man+woman≈queenk
- Manus(一种AI代理或自动化工具)与DeepSeek(一种强大的语言模型或AI能力)结合使用任务自动化和智能决策
zzlyx99
人工智能自动化语言模型
一、Manus与DeepSeek差异十分好奇DeepSeek和Manus究竟谁更厉害些,DeepSeek是知识型大脑,Manus则是全能型执行者。即DeepSeek专注于语言处理、知识整合与专业文本生成。其核心优势在于海量参数支持的深度学习和知识推理能力,例如撰写论文、润色法律合同、解答专业问题等。Manus则更强调从规划到交付的闭环能力。它通过工具链调用(如浏览器、代码编辑器)自主执行复杂任务,
- MySQL底层原理
编织幻境的妖
mysql数据库
1.请解释MySQL的逻辑架构和物理架构。MySQL的逻辑架构和物理架构涉及到多个层面,包括网络连接、服务处理、存储引擎以及数据存储等部分。具体如下:逻辑架构:连接层(ConnectionLayer):客户端通过TCP/IP或其他方式连接到MySQL服务器。为了解决频繁创建和销毁连接带来的性能问题,MySQL使用TCP连接池和线程池来管理连接和执行任务。服务层(ServiceLayer):这一层包
- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- 订单管理系统,大学生数据结构期末作业/C语言实践作业
陌路物是人非
排序算法数据结构算法
任务:订单管理系统的设计与实现设计并实现一个订单管理系统界面分成两部分,分别是管理员和用户的界面主要功能:用户:(1)用户的登录及注册(2)用户信息修改(3)购买物品(4)充值(5)升序排序(按金额)物品管理员:(1)显示所有订单(2)插入订单信息(3)删除订单信息(4)排序订单(快排按编号)(5)统计订单信息(6)添加物品注意事项:一共需要建立4个文件(key.txt、物品清单.txt、用户信息
- Java多线程与并发编程实战——从基础到进阶
AI天才研究院
Python实战Java实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介互联网企业都在大力拓展自己的业务,而新的技术革命也带来了海量的数据量,因此,单机并发处理能力已经无法满足现代信息时代对高速数据的需求。大数据和云计算带来的分布式系统架构,让单台计算机不仅能够执行单个任务,而且可以横向扩展处理大量任务。在这种情况下,如何充分利用多核CPU、共享内存等资源并发地处理多项任务就成为现代系统设计者们必备技能之一。本书将以实操为导向,全面
- 智能化开发新时代:DeepSeek加持下的编程革命
MoonbeamOwl67
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化开发新时代:DeepSeek加持下的编程革命在当今快速发展的科技时代,软件开发已经成为推动社会进步的重要动力。然而,对于许多开发者而言,编写高质量的代码仍然是一项充满挑战的任务。从复杂的算法设计到繁琐的调试过程,每一个环节都需要耗费大量的时间和精力。而随着人工智能技术的迅猛发展,一种全新的编程方式正在悄然改变这
- TRAE与Cursor最佳实践指南(截至2025年3月)
xinxiyinhe
AI编程人工智能pythonAI编程人工智能python
一、核心能力适配策略TRAE的Builder模式开发流程需求拆解:将复杂需求分解为可执行子任务(如先搭建项目框架,再分模块实现功能),通过多轮对话逐步生成代码。多模态输入:上传设计草图或错误截图,结合自然语言描述需求,提升代码生成精准度(例如电商页面开发可直接上传原型图)。版本控制:利用“历史会话回溯”功能快速回退到指定版本,避免代码修改失控。Cursor的高效协作模式插件生态整合:复用VSCod
- 软件需求-软件客户需求权利书
workflower
UML建模需求分析软件需求软件工程设计模式
权利#1:要求分析人员使用符合客户语言习惯的表达需求讨论应集中于业务需要和任务,故要使用业务术语,你应将其教给分析人员,而你不一定要懂得计算机的行业术语。权利#2:要求分析人员了解客户的业务及目标通过与用户交流来获取用户需求、分析人员才能更好地了解你的业务任务和怎样才能使产品更好地满足你的需要。这将有助于开发人员设计出真正满足你的需要并达到你期望的优秀软件。为帮助开发人员和分析人员,可以考虑邀请他
- 数字电路设计的基本流程
minstbe
数字电路设计fpga开发
数字电路设计的整个流程可以看作是围绕RTL设计这一关键环节展开的完整芯片设计过程。以下是从RTL出发,逐步扩展到其他环节的详细描述:1.系统级设计(System-LevelDesign)目标:确定芯片的总体功能和性能指标。定义芯片的架构,包括模块划分、数据路径、控制路径等。关键内容:需求分析:确定芯片需要完成的任务,例如计算能力、功耗、面积等。系统建模:使用工具(如MATLAB、SystemC)搭
- 【技术支持】cron4j的scheduler调度模式
daban2008
技术支持javacron4j
调度模式(schedulingpattern)schedulingpattern是一个UNIX的类定时任务模式,由一个以空格分隔为五个部分的字符串组成。从左到右依次为分、时、天、月、周。精确到秒则需要quartz。字段规则分从0到59时从0到23天从1到31,字母L可以表示月的最后一天月从1到12,可以别名:jan",“feb”,“mar”,“apr”,“may”,“jun”,“jul”,“aug
- 万人在单一世界互动问答集(2)---公开数据多少玩家能进行多少即时互动?
微网兔子
後端技術网络服务器c++unity架构游戏程序
在先前的测试数据,每个逻辑伺服器能处理约80万个任务/秒,每个任务影响3-5个物件。若我们假设10个逻辑伺服器,每秒可处理800万个互动,而这是在24,000名玩家的情境下(每个代理服务处理2,400名玩家,假设10个代理)。测试数据显示,每个代理服务处理2,400名玩家时,流量为220MiB/s。若我们同样线性推算,则60,000名玩家将产生约5.5GiB/s(约5500MiB/s)的网路流量,
- 垃圾收集算法
zhangpeng455547940
Java数据结构与算法设计算法jvmjava
常见算法引用计数记录每个对象的引用次数,当引用次数为零时回收对象标记-清除根引用可达分析、扫描内存回收不可达对象分代回收基于观察到大多数对象生命周期较短,而少数对象生命周期较长的优化算法空闲回收在CPU空闲时运行垃圾回收器,以减少对程序执行的影响增量回收将垃圾回收任务分解为多个小步骤,逐步完成。可以避免一次性垃圾回收导致的长时间暂停,从而减少对程序性能的影响Java最新垃圾回收算法Java最新垃圾
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 华为OD机试 - 小朋友来自多少小区(Python/JS/C/C++ 2024 C卷 100分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述幼儿园组织活动,老师布置了一个任务:每个小朋友去了解与自己同一个
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- AGI的学习与适应能力
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
“AGI的学习与适应能力”1.背景介绍1.1人工通用智能(AGI)的定义人工通用智能(ArtificialGeneralIntelligence,AGI)是指能够像人类一样具有广泛的理解和学习能力、可以完成多种复杂任务的人工智能系统。与狭义人工智能(NarrowAI)专注于特定领域和特定任务不同,AGI旨在模拟人类整体认知能力,包括感知、推理、学习、计划、创造力和自我意识等。1.2AGI的重要性和
- 你的AI客服为何总抓不住客户核心诉求?(附特征优化方案)
人工智能
1特征工程的意义nlp任务中,原始文本经数值映射后形成的词向量序列,难充分表达语言深层语义特征。就需引入文本特征增强技术:语义信息补全:突破单词语义局限,捕获词序关联特征模型适配优化:构建符合算法输入规范的矩阵结构评估指标提升:通过特征增强直接影响模型准确率、召回率等核心KPI如电商评论情感分析场景,单纯用词频特征可能导致"这个手机质量差得惊人"和"这个手机质量惊人地差"被判定为相同语义,此时bi
- LLaMA-Factory 训练数据默认使用 instruction、input、output 三个 key
背太阳的牧羊人
模型微调llama人工智能大模型微调
在LLaMA-Factory进行SFT(Directivesupervisionfine-tuning指令监督微调)时,训练数据的格式非常重要,因为大模型依赖标准化的数据结构来学习指令-响应模式。identity.json文件的数据采用了“instruction”、“input”、“output”这三个key,它们的作用如下:Key作用示例“instruction”代表用户给AI的指令(问题或任务
- 如何选择显卡(202408)
=PNZ=BeijingL
操作系统经验分享1024程序员节
(图片来自网络)显卡,也被称为视频卡、图形适配器或GPU(图形处理单元),是电脑中负责渲染图形输出到显示器的关键硬件组件一显卡的基本作用1.图形渲染显卡的主要任务是处理和渲染图形。无论是浏览网页、观看视频还是使用图形设计软件,所有这些操作都需要显卡来计算图形信息,并将其转化为可在屏幕上显示的图像。显卡包含专门设计用于图形处理的芯片,可以快速执行这些操作,从而提供流畅和高质量的视觉体验。2.加速图形
- 程序员必看!DeepSeek全栈开发指南:从代码生成到分布式训练的黑科技解析
AI创享派
后端
一、DeepSeek技术新突破:程序员必须掌握的MoE架构实战2025年2月25日,DeepSeek开源了专为MoE模型设计的DeepEP通信库,这项技术革新直接影响了分布式训练和推理效率。该库支持FP8精度与NVLink/RDMA技术,吞吐量提升3倍以上,特别适合处理千亿级参数的分布式任务。对于后端工程师而言,DeepEP的以下特性值得关注:计算-通信重叠机制:通过回调函数实现GPU资源动态分配
- 设计空间探索:乘法器设计的面积、延时、功耗优化
赛卡
人工智能前端算法
复杂压缩器可压缩更多高度,减少层数(外层while循环次数),但延迟较高。使用哪些压缩器以何种方案进行压缩,是一个设计空间探索问题。1.压缩器种类的选择4-2压缩器:由两个全加器(FA)组成,能够将4个输入压缩为2个输出(和与进位)。适用于中等规模的压缩需求,可以有效减少部分积的位宽。6-2压缩器:能够将6个输入压缩为2个输出,适用于较大规模的压缩需求,尤其在多列压缩时可以减少层次数量。9-2压缩
- 架构模式之黑板模式
weixin_30518397
c/c++游戏数据库
一、定义黑板模式是一种常用的架构模式,应用中的多种不同数据处理逻辑相互影响和协同来完成数据分析处理。黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。这种模式对于没有确定解决方案策略的问题是有用的。二、模式组成黑板模式由3个
- 黑板架构风格
BGM不迷路
架构
一、定义黑板架构(BlackboardArchitecture)是一种用于解决复杂问题的系统架构模式,其中多个独立的组件(通常称为知识源)共同工作,通过共享一个共同的“黑板”(通常是一个全局的共享数据结构)来实现解决方案的推演的架构风格。每个组件根据黑板上的信息做出贡献,修改黑板上的状态,直到最终完成任务。二、组成黑板架构由黑板(Blackboard)、知识源(KnowledgeSources)、
- 黑板模式(Blackboard Design Pattern)。
软件求生
黑板模式设计模式
意图黑板模式是观察者模式的一个扩展,知名度并不高,但是我们使用的范围却非常广。黑板模式的意图如下:允许消息的读写同时进行,广泛的交互消息。简单的说,黑板模式允许多个消息读写者同时存在,消息的生产者和消费者完全分开。这就像一个黑板,任何一个教授(消息的生产者)都可以在其上书写消息,任何一个学生(消息的消费者)都可以从黑板上读取消息,两者在空间和时间上可以解耦,并且互不干扰。黑板模式确实是消息的广播,
- 【PCDN】2020架构: 提高穿透和分享、BGP协议
等风来不如迎风去
传输探索实践架构服务器运维
小溪流科技自研海外PCDN系统技术架构与演进转载自腾讯云文/张道远整理/核心组网我们自己的P2P组网模型。我们采用了树形组网,但是我们规避优化了传统树形模型的缺点。为防止延时过高,我们在调度时会严格控制树形高度。为弥补父节点掉线造成孤儿状态的不足,我们使系统中每个节点都首先从CDN拉流。如果出现父节点掉线的情况,它立即向服务器补片,同时触发新的组网。对于纯粹的消费者模型,我们目前有两种方案,其中一
- 提出机器人自主学习新范式,深大团队最新顶会论文,刷新6大复杂任务SOTA
量子位
关注前沿科技量子位让机器人轻松学习复杂技能有新框架了!深圳大学大数据系统计算技术国家工程实验室李坚强教授团队联合鹏城国家实验室、北京理工莫斯科大学,提出了奖励函数与策略协同进化框架ROSKA。在多个高维度机器人任务上,在仅使用89%训练样本的情况下,比现有SOTA方法平均性能提升95.3%。众所周知,随着机器人技术的快速发展,其应用已渗透至日常生活和工业生产场景。然而在多自由度机器人控制领域,传统
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_