Eviction Kill POD选择分析

Eviction机制是当节点上的资源紧张达到自己设定的阈值时可以进行资源回收。

EvictionManager工作流程中两个比较重要的步骤是: reclaimNodeLevelResources(回收节点资源)和killPod。

killPod总会有一个优先级选择pod来kill,下面就说一下这个优先级排序的过程。

pkg/kubelet/kubelet.go
func (kl *Kubelet) initializeRuntimeDependentModules() {
    if err := kl.cadvisor.Start(); err != nil {
        // Fail kubelet and rely on the babysitter to retry starting kubelet.
        // TODO(random-liu): Add backoff logic in the babysitter
        glog.Fatalf("Failed to start cAdvisor %v", err)
    }
    // eviction manager must start after cadvisor because it needs to know if the container runtime has a dedicated imagefs
    kl.evictionManager.Start(kl.cadvisor, kl.GetActivePods, kl.podResourcesAreReclaimed, kl.containerManager, evictionMonitoringPeriod)
}

这是kubelet中的代码 从最后一行可以看到调用了evictionManager的Start函数,这个函数就是启动eviction使eviction开始工作,最后一个参数evictionMonitoringPeriod是个常量值是10秒,这个参数是让eviction流程10秒进行一次。

pkg/kubelet/eviction/eviction_manager.go
func (m *managerImpl) Start(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc, podCleanedUpFunc PodCleanedUpFunc, capacityProvider CapacityProvider, monitoringInterval time.Duration) {
    // start the eviction manager monitoring
    go func() {
        for {
            if evictedPods := m.synchronize(diskInfoProvider, podFunc, capacityProvider); evictedPods != nil {
                glog.Infof("eviction manager: pods %s evicted, waiting for pod to be cleaned up", format.Pods(evictedPods))
                m.waitForPodsCleanup(podCleanedUpFunc, evictedPods)
            } else {
                time.Sleep(monitoringInterval)
            }
        }
    }()
}

这个Start就是上文kubelet调用的函数,其中又调用了synchronize函数,这个就是进行evcition的流程。

func (m *managerImpl) synchronize(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc, capacityProvider CapacityProvider) []*v1.Pod {
    // if we have nothing to do, just return
    thresholds := m.config.Thresholds
    if len(thresholds) == 0 {
        return nil
    }

    glog.V(3).Infof("eviction manager: synchronize housekeeping")
    // build the ranking functions (if not yet known)
    // TODO: have a function in cadvisor that lets us know if global housekeeping has completed
    if m.dedicatedImageFs == nil {
        hasImageFs, ok := diskInfoProvider.HasDedicatedImageFs()
        if ok != nil {
            return nil
        }
        m.dedicatedImageFs = &hasImageFs
        m.resourceToRankFunc = buildResourceToRankFunc(hasImageFs)
        m.resourceToNodeReclaimFuncs = buildResourceToNodeReclaimFuncs(m.imageGC, m.containerGC, hasImageFs)
    }

    activePods := podFunc()
    // make observations and get a function to derive pod usage stats relative to those observations.
    observations, statsFunc, err := makeSignalObservations(m.summaryProvider, capacityProvider, activePods, *m.dedicatedImageFs)
    if err != nil {
        glog.Errorf("eviction manager: unexpected err: %v", err)
        return nil
    }
    debugLogObservations("observations", observations)

    // attempt to create a threshold notifier to improve eviction response time
    if m.config.KernelMemcgNotification && !m.notifiersInitialized {
        glog.Infof("eviction manager attempting to integrate with kernel memcg notification api")
        m.notifiersInitialized = true
        // start soft memory notification
        err = startMemoryThresholdNotifier(m.config.Thresholds, observations, false, func(desc string) {
            glog.Infof("soft memory eviction threshold crossed at %s", desc)
            // TODO wait grace period for soft memory limit
            m.synchronize(diskInfoProvider, podFunc, capacityProvider)
        })
        if err != nil {
            glog.Warningf("eviction manager: failed to create hard memory threshold notifier: %v", err)
        }
        // start hard memory notification
        err = startMemoryThresholdNotifier(m.config.Thresholds, observations, true, func(desc string) {
            glog.Infof("hard memory eviction threshold crossed at %s", desc)
            m.synchronize(diskInfoProvider, podFunc, capacityProvider)
        })
        if err != nil {
            glog.Warningf("eviction manager: failed to create soft memory threshold notifier: %v", err)
        }
    }

    // determine the set of thresholds met independent of grace period
    thresholds = thresholdsMet(thresholds, observations, false)
    debugLogThresholdsWithObservation("thresholds - ignoring grace period", thresholds, observations)

    // determine the set of thresholds previously met that have not yet satisfied the associated min-reclaim
    if len(m.thresholdsMet) > 0 {
        thresholdsNotYetResolved := thresholdsMet(m.thresholdsMet, observations, true)
        thresholds = mergeThresholds(thresholds, thresholdsNotYetResolved)
    }
    debugLogThresholdsWithObservation("thresholds - reclaim not satisfied", thresholds, observations)

    // determine the set of thresholds whose stats have been updated since the last sync
    thresholds = thresholdsUpdatedStats(thresholds, observations, m.lastObservations)
    debugLogThresholdsWithObservation("thresholds - updated stats", thresholds, observations)

    // track when a threshold was first observed
    now := m.clock.Now()
    thresholdsFirstObservedAt := thresholdsFirstObservedAt(thresholds, m.thresholdsFirstObservedAt, now)

    // the set of node conditions that are triggered by currently observed thresholds
    nodeConditions := nodeConditions(thresholds)
    if len(nodeConditions) > 0 {
        glog.V(3).Infof("eviction manager: node conditions - observed: %v", nodeConditions)
    }

    // track when a node condition was last observed
    nodeConditionsLastObservedAt := nodeConditionsLastObservedAt(nodeConditions, m.nodeConditionsLastObservedAt, now)

    // node conditions report true if it has been observed within the transition period window
    nodeConditions = nodeConditionsObservedSince(nodeConditionsLastObservedAt, m.config.PressureTransitionPeriod, now)
    if len(nodeConditions) > 0 {
        glog.V(3).Infof("eviction manager: node conditions - transition period not met: %v", nodeConditions)
    }

    // determine the set of thresholds we need to drive eviction behavior (i.e. all grace periods are met)
    thresholds = thresholdsMetGracePeriod(thresholdsFirstObservedAt, now)
    debugLogThresholdsWithObservation("thresholds - grace periods satisified", thresholds, observations)

    // update internal state
    m.Lock()
    m.nodeConditions = nodeConditions
    m.thresholdsFirstObservedAt = thresholdsFirstObservedAt
    m.nodeConditionsLastObservedAt = nodeConditionsLastObservedAt
    m.thresholdsMet = thresholds
    m.lastObservations = observations
    m.Unlock()

    // evict pods if there is a resource usage violation from local volume temporary storage
    // If eviction happens in localVolumeEviction function, skip the rest of eviction action
    if utilfeature.DefaultFeatureGate.Enabled(features.LocalStorageCapacityIsolation) {
        if evictedPods := m.localStorageEviction(activePods); len(evictedPods) > 0 {
            return evictedPods
        }
    }

    // determine the set of resources under starvation
    starvedResources := getStarvedResources(thresholds)
    if len(starvedResources) == 0 {
        glog.V(3).Infof("eviction manager: no resources are starved")
        return nil
    }

    // rank the resources to reclaim by eviction priority
    sort.Sort(byEvictionPriority(starvedResources))
    resourceToReclaim := starvedResources[0]
    glog.Warningf("eviction manager: attempting to reclaim %v", resourceToReclaim)

    // determine if this is a soft or hard eviction associated with the resource
    softEviction := isSoftEvictionThresholds(thresholds, resourceToReclaim)

    // record an event about the resources we are now attempting to reclaim via eviction
    m.recorder.Eventf(m.nodeRef, v1.EventTypeWarning, "EvictionThresholdMet", "Attempting to reclaim %s", resourceToReclaim)

    // check if there are node-level resources we can reclaim to reduce pressure before evicting end-user pods.
    if m.reclaimNodeLevelResources(resourceToReclaim, observations) {
        glog.Infof("eviction manager: able to reduce %v pressure without evicting pods.", resourceToReclaim)
        return nil
    }

    glog.Infof("eviction manager: must evict pod(s) to reclaim %v", resourceToReclaim)

    // rank the pods for eviction
    rank, ok := m.resourceToRankFunc[resourceToReclaim]
    if !ok {
        glog.Errorf("eviction manager: no ranking function for resource %s", resourceToReclaim)
        return nil
    }

    // the only candidates viable for eviction are those pods that had anything running.
    if len(activePods) == 0 {
        glog.Errorf("eviction manager: eviction thresholds have been met, but no pods are active to evict")
        return nil
    }

    // rank the running pods for eviction for the specified resource
    rank(activePods, statsFunc)

    glog.Infof("eviction manager: pods ranked for eviction: %s", format.Pods(activePods))

    //record age of metrics for met thresholds that we are using for evictions.
    for _, t := range thresholds {
        timeObserved := observations[t.Signal].time
        if !timeObserved.IsZero() {
            metrics.EvictionStatsAge.WithLabelValues(string(t.Signal)).Observe(metrics.SinceInMicroseconds(timeObserved.Time))
        }
    }

    // we kill at most a single pod during each eviction interval
    for i := range activePods {
        pod := activePods[i]
        // If the pod is marked as critical and static, and support for critical pod annotations is enabled,
        // do not evict such pods. Static pods are not re-admitted after evictions.
        // https://github.com/kubernetes/kubernetes/issues/40573 has more details.
        if utilfeature.DefaultFeatureGate.Enabled(features.ExperimentalCriticalPodAnnotation) &&
            kubelettypes.IsCriticalPod(pod) && kubepod.IsStaticPod(pod) {
            continue
        }
        status := v1.PodStatus{
            Phase:   v1.PodFailed,
            Message: fmt.Sprintf(message, resourceToReclaim),
            Reason:  reason,
        }
        // record that we are evicting the pod
        m.recorder.Eventf(pod, v1.EventTypeWarning, reason, fmt.Sprintf(message, resourceToReclaim))
        gracePeriodOverride := int64(0)
        if softEviction {
            gracePeriodOverride = m.config.MaxPodGracePeriodSeconds
        }
        // this is a blocking call and should only return when the pod and its containers are killed.
        err := m.killPodFunc(pod, status, &gracePeriodOverride)
        if err != nil {
            glog.Warningf("eviction manager: error while evicting pod %s: %v", format.Pod(pod), err)
        }
        return []*v1.Pod{pod}
    }
    glog.Infof("eviction manager: unable to evict any pods from the node")
    return nil
}

activePods := podFunc()获取了节点上的active的pod,然后调用rank(activePods, statsFunc)对activePod进行排序,这个rank最终的排序方法是在pkg/kubelet/eviction/helpers.go里面。

// Swap is part of sort.Interface.
func (ms *multiSorter) Swap(i, j int) {
    ms.pods[i], ms.pods[j] = ms.pods[j], ms.pods[i]
}

// Less is part of sort.Interface.
func (ms *multiSorter) Less(i, j int) bool {
    p1, p2 := ms.pods[i], ms.pods[j]
    var k int
    for k = 0; k < len(ms.cmp)-1; k++ {
        cmpResult := ms.cmp[k](p1, p2)
        // p1 is less than p2
        if cmpResult < 0 {
            return true
        }
        // p1 is greater than p2
        if cmpResult > 0 {
            return false
        }
        // we don't know yet
    }
    // the last cmp func is the final decider
    return ms.cmp[k](p1, p2) < 0
}

func qosComparator(p1, p2 *v1.Pod) int {
    qosP1 := v1qos.GetPodQOS(p1)
    qosP2 := v1qos.GetPodQOS(p2)
    // its a tie
    if qosP1 == qosP2 {
        return 0
    }
    // if p1 is best effort, we know p2 is burstable or guaranteed
    if qosP1 == v1.PodQOSBestEffort {
        return -1
    }
    // we know p1 and p2 are not besteffort, so if p1 is burstable, p2 must be guaranteed
    if qosP1 == v1.PodQOSBurstable {
        if qosP2 == v1.PodQOSGuaranteed {
            return -1
        }
        return 1
    }
    // ok, p1 must be guaranteed.
    return 1
}

// memory compares pods by largest consumer of memory relative to request.
func memory(stats statsFunc) cmpFunc {
    return func(p1, p2 *v1.Pod) int {
        p1Stats, found := stats(p1)
        // if we have no usage stats for p1, we want p2 first
        if !found {
            return -1
        }
        // if we have no usage stats for p2, but p1 has usage, we want p1 first.
        p2Stats, found := stats(p2)
        if !found {
            return 1
        }
        // if we cant get usage for p1 measured, we want p2 first
        p1Usage, err := podMemoryUsage(p1Stats)
        if err != nil {
            return -1
        }
        // if we cant get usage for p2 measured, we want p1 first
        p2Usage, err := podMemoryUsage(p2Stats)
        if err != nil {
            return 1
        }

        // adjust p1, p2 usage relative to the request (if any)
        p1Memory := p1Usage[v1.ResourceMemory]
        p1Spec, err := core.PodUsageFunc(p1)
        if err != nil {
            return -1
        }
        p1Request := p1Spec[api.ResourceRequestsMemory]
        p1Memory.Sub(p1Request)

        p2Memory := p2Usage[v1.ResourceMemory]
        p2Spec, err := core.PodUsageFunc(p2)
        if err != nil {
            return 1
        }
        p2Request := p2Spec[api.ResourceRequestsMemory]
        p2Memory.Sub(p2Request)

        // if p2 is using more than p1, we want p2 first
        return p2Memory.Cmp(p1Memory)
    }
}

// disk compares pods by largest consumer of disk relative to request for the specified disk resource.
func disk(stats statsFunc, fsStatsToMeasure []fsStatsType, diskResource v1.ResourceName) cmpFunc {
    return func(p1, p2 *v1.Pod) int {
        p1Stats, found := stats(p1)
        // if we have no usage stats for p1, we want p2 first
        if !found {
            return -1
        }
        // if we have no usage stats for p2, but p1 has usage, we want p1 first.
        p2Stats, found := stats(p2)
        if !found {
            return 1
        }
        // if we cant get usage for p1 measured, we want p2 first
        p1Usage, err := podDiskUsage(p1Stats, p1, fsStatsToMeasure)
        if err != nil {
            return -1
        }
        // if we cant get usage for p2 measured, we want p1 first
        p2Usage, err := podDiskUsage(p2Stats, p2, fsStatsToMeasure)
        if err != nil {
            return 1
        }

        // disk is best effort, so we don't measure relative to a request.
        // TODO: add disk as a guaranteed resource
        p1Disk := p1Usage[diskResource]
        p2Disk := p2Usage[diskResource]
        // if p2 is using more than p1, we want p2 first
        return p2Disk.Cmp(p1Disk)
    }
}

// rankMemoryPressure orders the input pods for eviction in response to memory pressure.
func rankMemoryPressure(pods []*v1.Pod, stats statsFunc) {
    orderedBy(qosComparator, memory(stats)).Sort(pods)
}

// rankDiskPressureFunc returns a rankFunc that measures the specified fs stats.
func rankDiskPressureFunc(fsStatsToMeasure []fsStatsType, diskResource v1.ResourceName) rankFunc {
    return func(pods []*v1.Pod, stats statsFunc) {
        orderedBy(qosComparator, disk(stats, fsStatsToMeasure, diskResource)).Sort(pods)
    }
}

rankMemoryPressure是对pod进行内存的排序, rankDiskPressureFunc是对pod对disk进行排序。
qosComparator,memory,disk是具体的排序策略。

排序首先会调用qosComparator进行排序,如果pod的Qos是PodQOSBestEffort会最先被杀掉,如果两个pod的Qos相同然后会根据memory或是disk规则根据使用量进行排序,使用量大的会优先被杀掉。每次eviction流程kill pod会kill一个直至kill成功,10秒钟以后会进行下一次流程。

你可能感兴趣的:(Eviction Kill POD选择分析)