完全参考:Flink1.3QuickStart
启动本地运行
首先找一台安装了hadoop的linux。
将安装包解压,到bin目录启动local模式的脚本。
tar -zxvf flink-1.3.1-bin-hadoop26-scala_2.11.tgz
./start-local.sh
运行wordCount例子
这个例子从sokect端口中每隔5秒读取其中的输入并进行记数。
//执行完nc输入单词,程序会开始记数。
nc -l 9001
//开另一个xshell,执行运行程序的命令
./bin/flink run examples/streaming/SocketWindowWordCount.jar --port 9001
//到log目录下可以看到输出了记数的文件
运行的jar中的源码如下:
package org.apache.flink.streaming.examples.socket;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
@SuppressWarnings("serial")
public class SocketWindowWordCount {
public static void main(String[] args) throws Exception {
// the host and the port to connect to
final String hostname;
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
hostname = params.has("hostname") ? params.get("hostname") : "localhost";
port = params.getInt("port");
} catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount " +
"--hostname --port ', where hostname (localhost by default) " +
"and port is the address of the text server");
System.err.println("To start a simple text server, run 'netcat -l ' and " +
"type the input text into the command line");
return;
}
// get the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// get input data by connecting to the socket
DataStream text = env.socketTextStream(hostname, port, "\n");
// parse the data, group it, window it, and aggregate the counts
DataStream windowCounts = text
.flatMap(new FlatMapFunction() {
@Override
public void flatMap(String value, Collector out) {
for (String word : value.split("\\s")) {
out.collect(new WordWithCount(word, 1L));
}
}
})
.keyBy("word")
.timeWindow(Time.seconds(5))
.reduce(new ReduceFunction() {
@Override
public WordWithCount reduce(WordWithCount a, WordWithCount b) {
return new WordWithCount(a.word, a.count + b.count);
}
});
// print the results with a single thread, rather than in parallel
windowCounts.print().setParallelism(1);
env.execute("Socket Window WordCount");
}
/**
* Data type for words with count.
*/
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return word + " : " + count;
}
}
}
创建flink项目
window的命令行执行以下命令即可下载一个模板项目,导入IDE中就可以愉快地撸了。
mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.3.0