源码阅读是基于JDK7,本篇主要涉及CyclicBarrier常用方法源码分析。
1.概述
CyclicBarrier是一个同步辅助类,它允许一组线程互相等待,直到所有线程都到达某个公共屏障点(也可以叫同步点),即相互等待的线程都完成调用await方法,所有被屏障拦截的线程才会继续运行await方法后面的程序。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时CyclicBarrier很有用。因为该屏障点在释放等待线程后可以重用,所以称它为循环的屏障点。CyclicBarrier支持一个可选的Runnable命令,在一组线程中的最后一个线程到达屏障点之后(但在释放所有线程之前),该命令只在所有线程到达屏障点之后运行一次,并且该命令由最后一个进入屏障点的线程执行。
2.使用样例
下面的代码演示了CyclicBarrier简单使用的样例。
public class CyclicBarrierDemo {
@Test
public void test() {
final CyclicBarrier barrier = new CyclicBarrier(2, myThread);
new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println(Thread.currentThread().getName());
barrier.await();
System.out.println(Thread.currentThread().getName());
} catch (Exception e) {
e.printStackTrace();
}
}
}, "thread1").start();
new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println(Thread.currentThread().getName());
barrier.await();
System.out.println(Thread.currentThread().getName());
} catch (Exception e) {
e.printStackTrace();
}
}
}, "thread2").start();
}
Thread myThread = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("myThread");
}
}, "thread3");
}
输出结果如下所示:
thread1
thread2
myThread
thread2
thread1
3.数据结构
CyclicBarrier中声明了如下一些属性及变量:
private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
private final int parties;
private final Runnable barrierCommand;
private Generation generation = new Generation();
private int count;
(1)lock用于保护屏障入口的锁;
(2)trip线程等待条件;
(3)parties参与等待的线程数;
(4)barrierCommand当所有线程到达屏障点之后,首先执行的命令;
(5)count实际中仍在等待的线程数,每当有一个线程到达屏障点,count值就会减一;当一次新的运算开始后,count的值被重置为parties。
4.构造方法
提供了两个构造函数可供使用。
//创建一个CyclicBarrier实例,parties指定参与相互等待的线程数,
//barrierAction指定当所有线程到达屏障点之后,首先执行的操作,该操作由最后一个进入屏障点的线程执行。
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
//创建一个CyclicBarrier实例,parties指定参与相互等待的线程数
public CyclicBarrier(int parties) {
this(parties, null);
}
5.getParties方法
//返回参与相互等待的线程数
public int getParties() {
return parties;
}
6.await方法
//该方法被调用时表示当前线程已经到达屏障点,当前线程阻塞进入休眠状态
//直到所有线程都到达屏障点,当前线程才会被唤醒
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen;
}
}
//该方法被调用时表示当前线程已经到达屏障点,当前线程阻塞进入休眠状态
//在timeout指定的超时时间内,等待其他参与线程到达屏障点
//如果超出指定的等待时间,则抛出TimeoutException异常,如果该时间小于等于零,则此方法根本不会等待
public int await(long timeout, TimeUnit unit)
throws InterruptedException,
BrokenBarrierException,
TimeoutException {
return dowait(true, unit.toNanos(timeout));
}
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Generation g = generation;
if (g.broken)
throw new BrokenBarrierException();
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
//当所有参与的线程都到达屏障点,立即去唤醒所有处于休眠状态的线程,恢复执行
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
for (;;) {
try {
if (!timed)
//让当前执行的线程阻塞,处于休眠状态
trip.await();
else if (nanos > 0L)
//让当前执行的线程阻塞,在超时时间内处于休眠状态
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
if (g != generation)
return index;
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
//唤醒所有处于休眠状态的线程,恢复执行
//重置count值为parties
//重置中断状态为false
private void nextGeneration() {
// signal completion of last generation
trip.signalAll();
// set up next generation
count = parties;
generation = new Generation();
}
//唤醒所有处于休眠状态的线程,恢复执行
//重置count值为parties
//重置中断状态为true
private void breakBarrier() {
generation.broken = true;
count = parties;
trip.signalAll();
}
这个等待的await方法,其实是使用ReentrantLock和Condition控制实现的。
7.isBroken方法
public boolean isBroken() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return generation.broken;
} finally {
lock.unlock();
}
}
判断此屏障是否处于中断状态。如果因为构造或最后一次重置而导致中断或超时,从而使一个或多个参与者摆脱此屏障点,或者因为异常而导致某个屏障操作失败,则返回true;否则返回false。
8.reset方法
//将屏障重置为其初始状态。
public void reset() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
//唤醒所有等待的线程继续执行,并设置屏障中断状态为true
breakBarrier(); // break the current generation
//唤醒所有等待的线程继续执行,并设置屏障中断状态为false
nextGeneration(); // start a new generation
} finally {
lock.unlock();
}
}
9.getNumberWaiting方法
//返回当前在屏障处等待的参与者数目,此方法主要用于调试和断言。
public int getNumberWaiting() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return parties - count;
} finally {
lock.unlock();
}
}
小结:
1.CyclicBarrier可以用于多线程计算数据,最后合并计算结果的应用场景。
2.这个等待的await方法,其实是使用ReentrantLock和Condition控制实现的。