Spark高级函数应用【combineByKey、transform】

一.combineByKey算子简介

  功能:实现分组自定义求和及计数。

  特点:用于处理(key,value)类型的数据。

  实现步骤:

    1.对要处理的数据进行初始化,以及一些转化操作

    2.检测key是否是首次处理,首次处理则添加,否则则进行分区内合并【根据自定义逻辑】

    3.分组合并,返回结果

二.combineByKey算子代码实战

 1 package big.data.analyse.scala.arithmetic
 2 
 3 import org.apache.spark.sql.SparkSession
 4 /**
 5   * Created by zhen on 2019/9/7.
 6   */
 7 object CombineByKey {
 8   def main (args: Array[String]) {
 9     val spark = SparkSession.builder().appName("CombineByKey").master("local[2]").getOrCreate()
10     val sc = spark.sparkContext
11     sc.setLogLevel("error")
12 
13     val initialScores = Array((("hadoop", "R"), 1), (("hadoop", "java"), 1),
14                               (("spark", "scala"), 1), (("spark", "R"), 1), (("spark", "java"), 1))
15 
16     val d1 = sc.parallelize(initialScores)
17 
18     val result = d1.map(x => (x._1._1, (x._1._2, x._2))).combineByKey(
19       (v : (String, Int)) => (v : (String, Int)), // 初始化操作,当key首次出现时初始化以及执行一些转化操作
20       (c : (String, Int), v : (String, Int)) => (c._1 + "," + v._1, c._2 + v._2), // 分区内合并,非首次出现时进行合并
21       (c1 : (String,Int),c2 : (String,Int)) => (c1._1 + "," + c2._1, c1._2 + c2._2)) // 分组合并
22       .collect()
23 
24     result.foreach(println)
25   }
26 }

三.combineByKey算子执行结果

  

四.transform算子简介

  在spark streaming中使用,用于实现把一个DStream转化为另一个DStream。

五.transform算子代码实现

 1 package big.data.analyse.streaming
 2 
 3 import org.apache.log4j.{Level, Logger}
 4 import org.apache.spark.SparkConf
 5 import org.apache.spark.streaming.{Seconds, StreamingContext}
 6 
 7 /**
 8   * Created by zhen on 2019/09/21.
 9   */
10 object StreamingSocket {
11 
12   def functionToCreateContext():StreamingContext = {
13     val conf = new SparkConf().setMaster("local[2]").setAppName("StreaingTest")
14     val ssc = new StreamingContext(conf, Seconds(10))
15     val lines = ssc.socketTextStream("192.168.245.137", 9999)
16 
17     val words = lines.flatMap(_.split(" "))
18     val pairs = words.map(word=>(word,1))
19 
20     /**
21       * 过滤内容
22       */
23     val filter = ssc.sparkContext.parallelize(List("money","god","oh","very")).map(key => (key,true))
24 
25     val result = pairs.transform(rdd => { // transform:把一个DStream转化为另一个SDtream
26       val leftRDD = rdd.leftOuterJoin(filter)
27       val word = leftRDD.filter( tuple =>{
28         val y = tuple._2
29         if(y._2.isEmpty){
30           true
31         }else{
32           false
33         }
34       })
35       word.map(tuple =>(tuple._1,1))
36     }).reduceByKey(_+_)
37 
38     result.foreachRDD(rdd => {
39       if(!rdd.isEmpty()){
40         rdd.foreach(println)
41       }
42     })
43     ssc.checkpoint("D:\\checkpoint")
44     ssc
45   }
46   Logger.getLogger("org").setLevel(Level.WARN) // 设置日志级别
47   def main(args: Array[String]) {
48     val ssc = StreamingContext.getOrCreate("D:\\checkpoint", functionToCreateContext _)
49 
50     ssc.start()
51     ssc.awaitTermination()
52     ssc.stop()
53   }
54 }

六.transform算子执行结果

  输入:

      

  输出:

    Spark高级函数应用【combineByKey、transform】_第1张图片

  备注:若在执行流计算时报:Some blocks could not be recovered as they were not found in memory. To prevent such data loss, enable Write Ahead Log (see programming guide for more details.,可以清空checkpoint目录下对应的数据【当前执行生成的数据】,可以解决这个问题。

你可能感兴趣的:(Spark高级函数应用【combineByKey、transform】)