- (附源码)ssm基于WEB的房屋出租管理系统 毕业设计261620
Wx-bishekaifayuan
springbootmysqljavapythonphp
房屋出租管理系统的设计与实现摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对房屋出租管理等问题,对房屋出租管理进行研究分析,然后开发设计出房屋出租管理系统以解决问题。房屋出租管理系统主要功能模块包括用户管理、房屋资讯、资讯分类、房型管理、地区管理、房屋信息、租赁登记、租赁合
- DeepSeek 爆火,程序员的饭碗还能端稳吗?
这儿有一堆花
人工智能
核心观点速览AI不会淘汰程序员,但会淘汰「不会用AI」的程序员初级岗位需求锐减,但「AI+领域专家」岗位暴涨300%2024年成关键转折点,转型窗口期仅剩6-12个月一、DeepSeek实测:这些工作正在消失✅高危场景TOP3场景类型人类平均耗时DeepSeek处理耗时替代率基础CRUD开发4.2小时8分钟92%简单数据清洗3小时15分钟88%接口文档生成2小时3分钟95%⚠️幸存者案例“我们团队
- 反向传播(Backpropagation)直觉理解
忍者算法
算法机器学习人工智能深度学习
反向传播(Backpropagation)直觉理解1.为什么要有反向传播?想象你在练习投篮,目标是让篮球进框。但你一开始投的方向可能偏左、偏右,或者力道过大、过小。每次投篮后,你会观察球偏离篮筐的情况,并调整投篮方式,让下次投得更准。神经网络的学习过程就像练习投篮:投篮→神经网络做出预测观察偏差(进没进)→计算误差调整投篮方式→调整神经网络的参数但问题是:你怎么知道该往哪个方向调整?你怎么知道该调
- 学会用提问的方式沟通
西部驯兽师
项目管理职场和发展产品经理
在中国文化背景下,良好的沟通确实需要注重提问的智慧。以下从提问方式、角度分类和文化适配性三个维度,为您系统梳理提问的艺术:一、提问方法论的核心要素文化适配性原则关系前置:提问前建立信任(“王总,最近您团队的项目进展顺利吗?”)间接试探:“您觉得这个方案还有哪些需要完善的地方?”(替代直接批评)面子保护:“这个问题可能我理解有偏差,能否请您再说明下?”结构化提问框架提问目标信息类型事实数据观点态度解
- 一键找出PDF图纸差异项,【图纸对比】帮您解决!
CAD快速看图
pdf
在工程、设计、建筑等众多领域,PDF图纸是信息传递和项目实施的重要载体。当面临多个版本的PDF图纸或者不同来源的图纸时,进行有效的对比就显得至关重要。准确对比PDF图纸能帮助专业人士快速发现设计变更。无论是细微的尺寸调整,还是大规模的结构修改,及时察觉这些变化能确保项目按照最新的设计意图推进,避免因使用旧版本图纸而导致的施工错误或生产偏差。通过图纸对比,各方可以清晰了解各自负责部分的变动情况,加强
- 丹尼尔·卡尼曼《噪声》——读书笔记
阅读读书笔记思维
好久没有写博客了,趁着出差有时间,读完了《噪声》这本买了很久的书,整体感觉还是有一些认知层面的迭代的,也整理下书中的一些内容,让自己能够沉下心来把思维和逻辑整理清楚,也能给大家做个分享。书籍介绍这本书是已故诺贝尔经济学奖得主丹尼尔·卡尼曼的新书,之前就是在这位作者去世的时候买回来学习的。本书主要讲的是人类在判断过程中的一个常见“噪声”问题,由于人或者时间原因导致决策的随机性偏差。这本书通过对人类决
- 全方位解析:大语言模型评测方法的综合指南
大模型玩家
语言模型人工智能自然语言处理深度学习agi大模型搜索引擎
自2017年Transformer模型提出以来,自然语言处理研究逐步转向基于该框架的预训练模型,如BERT、GPT、BART和T5等。这些预训练模型与下游任务适配后,持续刷新最优结果。然而,现有评测方法存在广度和深度不足、数据偏差、忽视模型其他能力或属性评估等问题。因此,需要全面评测和深入研究模型的各项能力、属性、应用局限性、潜在风险及其可控性等。本文回顾了自然语言处理中的评测基准与指标,将大语言
- 怎样通过人机融合智能去除“机器幻觉”?
人机与认知实验室
人机融合智能的目标是通过深度结合人类智能和机器智能,解决现有人工智能系统(特别是深度学习模型,如各种大模型)可能出现的问题,比如“机器幻觉”现象。机器幻觉指的是人工智能模型在处理信息时,做出错误的、非理性的判断或预测,这种现象往往源于模型在训练数据中的偏差、不完全信息或过度依赖某些特定模式。通过人机融合的方式,可以有效减少这种“幻觉”,进而提升人机环境系统智能的可靠性和解释能力。1.结合人类的直觉
- 从机器幻觉到智能幻觉
人机与认知实验室
机器幻觉与智能幻觉主要是关于人工智能(AI)系统在处理信息和生成输出时,可能会产生的错误认知或“幻觉”现象。1.机器幻觉在早期的计算机科学中,“机器幻觉”通常指的是计算机在进行数据处理时,出现了错误的输出或意外的结果。这类“幻觉”并不是指计算机本身具有意识,而是因为程序的设计、数据的不完整性或噪声、或算法的偏差等问题,导致机器产生了不符合现实的假设、错误的结论或奇怪的输出,具体涉及:图像生成幻觉:
- python天气数据分析与处理,用python数据分析天气
2401_84504019
人工智能
本篇文章给大家谈谈python天气预报可视化分析报告,以及基于python的天气预测系统研究,希望对各位有所帮助,不要忘了收藏本站喔。基于大数据重庆市气象数据分析摘要信息化社会内需要与之针对性的信息获取途径,但是途径的扩展基本上为人们所努力的方向,由于站在的角度存在偏差,人们经常能够获得不同类型信息,这也是技术最为难以攻克的课题。针对气象数据等问题,对气象信息进行研究分析,然后开发设计出气象数据分
- 大数据SQL调优专题——调优切入
黄雪超
技术基础大数据sql数据仓库
引入我们都知道大数据的SQL优化,并非一蹴而就的简单任务,而是一个涉及多个环节的复杂过程。从需求提出到最终交付,任何一个环节的微小偏差都可能影响最终成果。虽然我们的专栏名字叫大数据SQL调优,但是实际调优并不是简单对SQL优化,而是一个涉及多个环节的复杂过程。实际上从需求接入到最终交付,任何一个环节的都可能影响最终成果。而调优的本质并非对任务进行大规模重构,而是通过各种监控工具,排查梳理出瓶颈点在
- 半精度 单精度 双精度 概述
石兴稳
大数据
单精度、半精度和双精度通常用于描述浮点数在计算机中的表示方式,它们在位数、表示范围、精度以及应用场景等方面存在差异,以下为你详细介绍:基本概念在计算机中,浮点数是一种用于表示实数的方式,由符号位、指数位和尾数位组成。不同的精度对应着不同的位数分配,从而影响到数的表示范围和精度。具体介绍精度类型位数符号位(S)指数位(E)尾数位(M)偏差值表示范围精度半精度(FP16)16位1位5位10位15大约到
- 为AI聊天工具添加一个知识系统 之104 详细设计之45 祖产代码 之3 量子态治理
一水鉴天
软件智能智能制造人工语言人工智能
本文要点要点祖传代码一、对“槽”的‘功能’理解(分析家)1、三种hoc槽的描述--元符号(用圆圈圈起来的®@©。“元符号”代表内建Type代理的模式和级别-内嵌内核图层(三级级联的套打页racket):消费者-生产者物理加工代理Broker模式,发布-订阅心理建设代理Agent模式,感知-行动生理构造Delegate代理模式)三种hoc槽:pro此前误会,ad此在偏差和post此后谬误(图grap
- 金钱与幸福
weixin_48445672
个人成长
人们普遍认为“金钱买不到幸福”这一观点,可能是由多种复杂因素共同作用导致的认知偏差。以下从心理学、社会文化、个体经验等角度分析可能的原因:一、心理学视角:幸福的边际效用递减基本需求满足后的阈值效应金钱在满足生存需求(食物、住房、医疗等)时对幸福感提升显著,但达到一定阈值后(如收入覆盖基本安全和舒适生活),其边际效用递减。研究表明,年收入超过约7.5万美元(因地而异)后,金钱对幸福的增益逐渐减弱。许
- 【深度学习】Adam优化器
九筠
机器学习深度学习人工智能
目录1什么是Adam1.1基本概念1.2Adam的数学理解1.2.1计算一阶矩估计(mean)1.2.2计算二阶矩估计(uncenteredvariance)1.2.3矫正一阶矩估计(mean)和二阶矩估计(uncenteredvariance)的偏差1.2.4更新模型参数1.3Adam的简单理解2Adam优化算法怎么用2.1导入所需的库和模块2.2定义模型和损失函数2.3定义优化器2.4在训练循
- 清华大学第5弹: 《DeepSeek与AI幻觉》 - 清华大学DeepSeek全套资料完整版 - 持续更新 - PDF免费下载
jiswordsman
人工智能pdf
由清华大学新闻与传播学院与人工智能学院双聘教授沈阳教授团队倾力打造的《DeepSeek与AI幻觉》,全面呈现,共计38页。《DeepSeek与AI幻觉》报告探讨了AI幻觉的成因、评测方法及其影响,并以DeepSeek模型为例,分析数据偏差、知识固化等问题如何导致幻觉现象。报告还提出缓解策略,如联网搜索、提示词优化,并探讨AI幻觉在科学创新和艺术创作中的潜在价值。点击链接免费下载《DeepSeek与
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- 【AI面板识别】
嵌入式学习菌
敲代码系列华为OD刷题华为od
题目描述AI识别到面板上有N(1≤N≤100)个指示灯,灯大小一样,任意两个之间无重叠。由于AI识别误差,每次别到的指示灯位置可能有差异,以4个坐标值描述AI识别的指示灯的大小和位置(左上角x1,y1,右下角x2,y2),请输出先行后列排序的指示灯的编号,排序规则:每次在尚未排序的灯中挑选最高的灯作为的基准灯,找出和基准灯属于同一行所有的灯进行排序。两个灯高低偏差不超过灯半径算同一行(即两个灯坐标
- html5 判断长按操作,移动端h5模拟长按事件
weixin_39933414
html5判断长按操作
1、标志位vartimer='';varisLongTouch=false;//加个标志位,防止settimeout因为事件循环和实际时间有偏差vartarget=document.getElementById('target');target.addEventListener('touchstart',function(){timer=setTimeout(function(){isLongTo
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 标准应用 | 2025年网络安全服务成本度量实施参考
安全大哥
Web渗透测试应用安全web安全网络安全
01网络安全服务成本度量依据相关新变化为了解决我国网络安全服务产业发展中面临的服务供需两方对于服务成本组成认知偏差较大、网络安全服务成本度量缺乏依据的问题,中国网络安全产业联盟(CCIA)组织北京赛西科技发展有限责任公司、北京安信天行科技有限公司等21家相关单位共同研究制定了GB/T42461-2023《信息安全技术网络安全服务成本度量指南》(以下简称“标准”)。该标准以原劳动和社会保障部发布的《
- 【课题推荐】基于自适应滤波技术的多传感器融合在无人机组合导航中的应用研究
MATLAB卡尔曼
课题推荐与讲解无人机
无人机组合导航系统在现代航空、农业、监测等领域的应用越来越广泛。为了提高导航精度,通常采用多传感器融合技术,将来自不同传感器的数据(如GPS、惯性测量单元(IMU)、磁力计等)进行整合。然而,传感器的量测偏差、环境干扰以及非线性特性使得多传感器融合面临诸多挑战。因此,开发一种自适应的多传感器融合方法,能够有效应对这些问题,对无人机导航系统的性能提升至关重要。文章目录研究目标创新点研究方法实现示例M
- 【教程4>第5章>第28节】基于帧同步+相位同步+位同步的QPSK调制解调通信系统整体性能分析
fpga和matlab
#fpga开发帧同步+相位同步+位同步QPSK教程4
欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》《★教程4:FPGA/MATLAB/Simulink联合开发入门与进阶X例》目录1.软件版本2.系统资源占用3.系统性能分析3.1信噪比设置3.2时偏设置3.3相位偏差设置4.总结
- React 第二十五节 <Fragment></Fragment> 的用途以及使用注意事项详解
刺客-Andy
Reactreact.js前端前端框架
文章如果错误偏差,烦请及时批评指正一、为什么要使用?因为在React中,组件必须返回单个根元素。当我们尝试直接返回相邻的JSX元素时:functionBrokenComponent(){return(标题正文内容);}//报错:AdjacentJSXelementsmustbewrappedinanenclosingtag传统解决方案是使用包裹,但这会带来三大问题:1、破坏布局结构:多余的DOM节
- 软件工程中的认知负载管理:AI减负策略
前端
软件工程师的工作常常被描述为高压、高强度,这并非夸大其词。繁琐的重复性工作、陡峭的学习曲线、复杂的项目管理以及持续的技术迭代,都给开发者带来了巨大的认知负载。这种超负荷的状态不仅影响开发效率,更严重损害开发者的身心健康。幸运的是,AI写代码工具的兴起为我们提供了一种减轻认知负载,提升开发效率的有效途径。认知负载的来源与类型在软件开发过程中,认知负载的来源广泛且复杂。从需求分析阶段的理解偏差,到代码
- 前端交互设计的智能生成与迭代:AI代码生成器赋能高效开发
前端
在当今快节奏的互联网时代,用户体验至关重要,而前端交互设计作为用户与产品交互的桥梁,其重要性不言而喻。然而,传统的前端开发模式常常面临诸多挑战:开发效率低下、人力成本居高不下,以及设计稿与最终产品之间存在较大的偏差,这些都严重制约了产品迭代速度和用户体验的提升。幸运的是,随着人工智能技术的快速发展,“AI代码生成器”等智能化工具的出现为我们提供了解决这些问题的全新途径。设计稿到代码的智能转换:效率
- AF3 drmsd函数解读
qq_27390023
深度学习pytorch人工智能生物信息学python
drmsd(distanceRootMeanSquareDeviation,距离均方根偏差)函数在AlphaFold3的src.utils.validation_metrics模块中定义,用于计算两个蛋白质结构(或其他分子结构)之间的距离偏差。它衡量了两个结构的成对原子间距离差异,而不是直接比较原子坐标。这种度量方式比RMSD(RootMeanSquareDeviation,均方根偏差)更能反映全
- 强化学习关键技术:重要性采样深度剖析
进一步有进一步的欢喜
强化学习概率论机器学习人工智能重要性采样
目录一、引言二、重要性采样基本原理(一)什么是重要性采样(二)重要性采样在强化学习中的作用三、判断采样好坏的方法(一)偏差(Bias)(二)方差(Variance)(三)有效样本数量(EffectiveSampleSize)(四)与真实值对比(如果已知)四、重要性采样公式推导五、代码示例六、案例分析(一)机器人路径规划(二)游戏AI七、总结一、引言强化学习旨在让智能体在与环境的交互中学习到最优策略
- 如何在Google Chrome中手动设置位置信息
~漠北~
chrome手动修改位置网络
如何在GoogleChrome中手动设置位置信息如果用户位于「主要城市」,通常经IP地址获取到的定位信息都是比较接近实际的。但是如果用户处于偏远城市或者郊区,通过ISP获取到的位置信息与用户实际位置都会有相当的偏差,这主要取决于ISP的路由选择。如果你需要将准确的位置数据发送给网络工具或者网页浏览器,可以在GoogleChrome中手动配置经、纬度的方式来实现。反之,如果你要针对网站手动伪造用户实
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的