- 【Elasticsearch】自定义评分检索
G皮T
#Elasticelasticsearch大数据自定义评分查询检索_score搜索引擎
自定义评分检索1.自定义评分2.为什么需要自定义评分3.搜索结果相关度4.影响相关度评分的查询子句5.控制相关度评分的方法5.1FunctionScoreQuery5.1.1基础查询部分5.1.2评分函数部分(functions数组)第一个函数:品牌加权第二个函数:销量因子第三个函数:时间衰减5.1.3评分组合方式score_modeboost_mode5.1.4整体效果5.2使用Boosting
- 【集成学习】Bagging、Boosting、Stacking算法详解
文章目录1.相关算法详解:2.算法详细解释:2.1Bagging:2.2Boosting:2.3Stacking:2.4K-foldMulti-levelStacking:集成学习(EnsembleLearning)是一种通过结合多个模型的预测结果来提高整体预测性能的技术。它通过将多个学习器的结果集成起来,使得最终的模型性能更强,具有更好的泛化能力。常见的集成学习框架包括:Bagging、Boos
- 机器学习-三大SOTA Boosting算法总结和调优
小新学习屋
机器学习机器学习boosting集成学习决策树人工智能
参考书籍:《机器学习公式推导和代码实现》书籍页码:P197~205简介除了深度学习适用的文本、图像、语音、视频等非结构化数据,对于训练样本较少的结构化数据,Boosting算法仍是第一选择。XGBoost、LightGBM、CatBoost是目前经典的SOTABoosting算法算法对比维度XGBoostLightGBMCatBoos说明算法的继承性是对GBDT的改进是对XGBoost的改进是对X
- Boosting:从理论到实践——集成学习中的偏差征服者
大千AI助手
人工智能Python#OTHER集成学习boosting机器学习tree人工智能ML
核心定位:一种通过串行训练弱学习器、自适应调整数据权重,将多个弱模型组合成强模型的集成学习框架,专注于降低预测偏差。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、Boosting的本质目标:将一系列弱学习器(仅比随机猜测略好,如浅层决策树)组合成强学习器核心思想:错误驱动学习:后续模型重点修正
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- LightGBM 与 XGBoost 深度解析:从基础原理到实战优化
爱看烟花的码农
ML集成学习机器学习人工智能
LightGBM与XGBoost深度解析:从基础原理到实战优化引言梯度提升机(GradientBoostingMachine,GBM)及其衍生算法,如XGBoost和LightGBM,是当今机器学习领域中应用最为广泛且效果卓越的监督学习模型之一。然而,许多学习者在初次接触这些算法时,往往对其复杂的内部机制感到困惑,难以形成深刻理解,常常止步于对算法流程的死记硬背。本教程旨在深入浅出地剖析GBDT(
- 【机器学习】机器学习重要分支——集成学习:理论、算法与实践
E绵绵
Everything机器学习集成学习算法pythonAIGC人工智能应用
文章目录引言第一章集成学习的基本概念1.1什么是集成学习1.2集成学习的类型1.3集成学习的优势第二章集成学习的核心算法2.1Bagging方法2.2Boosting方法2.3Stacking方法第三章集成学习的应用实例3.1图像分类3.2文本分类第四章集成学习的未来发展与挑战4.1模型多样性与集成策略4.2大规模数据与计算资源4.3集成学习的解释性与可视化结论引言集成学习(EnsembleLea
- python简单的预测模型_python简单预测模型
HOWARD ZHOU
python简单的预测模型
python简单预测模型步骤1:导入所需的库,读取测试和训练数据集。#导入pandas、numpy包,导入LabelEncoder、random、RandomForestClassifier、GradientBoostingClassifier函数importpandasaspdimportnumpyasnpfromsklearn.preprocessingimportLabelEncoderim
- 机器学习之集成学习算法
文柏AI共享
机器学习集成学习算法
集成学习算法一概述二Bagging方法2.1思想2.2代表算法2.3API三Boosting方法3.1AdaBoost3.1.1思想3.1.2API3.2GBDT3.2.1思想3.2.2API3.3XGBoost3.3.1思想3.3.2API机器学习算法很多,今天和大家聊一个很强悍的算法-集成学习算法,基本上是处理复杂问题的首选.话不多说,直奔主题.一概述集成学习(EnsembleLearning
- 第二十七课:手搓梯度提升树
顽强卖力
数据分析python算法数据挖掘大数据
Python实现梯度提升树(GBDT):让决策树"代代进化"的魔法梯度提升树就像一群小树苗在接力成长,每棵新树都专注于前辈们犯过的错误,最终长成一片预测能力强大的森林。下面我用Python展示这个强大的算法。准备工具包fromsklearn.ensembleimportGradientBoostingRegressor#回归问题用fromsklearn.ensembleimportGradient
- 机器学习与深度学习14-集成学习
目录前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成学习的优势和局限性前文回顾上一篇文章链接:地址1.集成学习的定义集成学习(EnsembleLearn
- 秒懂Boosting和Bagging算法
来自于狂人
boosting算法集成学习
一、故事开头:考试现场的启示想象一下期末考试现场:Bagging班的学生每人独立做题,最后举手投票决定答案:“这道题选A的举手!”Boosting组的学霸们却玩起接力赛:“你先做第一题→我检查后改第二题→她再优化第三题”这就是机器学习中两种经典集成学习策略的生存之道!二、Bagging:民主投票的"乌合之众"逆袭战1.核心思想Bootstrap抽样:让每个模型在随机子数据集上训练(就像蒙着眼睛抓阄
- CatBoost:高效智能的梯度提升算法
亿只小灿灿
人工智能Python人工智能机器学习CatBoost
一、CatBoost概述CatBoost,全称“CategoricalBoosting”,顾名思义,其核心优势在于对类别型特征的处理。传统的梯度提升算法(如XGBoost、LightGBM)在处理类别特征时,通常需要先进行编码转换,如独热编码、标签编码等,但这些编码方式可能会引入噪声或导致模型过拟合。而CatBoost通过独特的算法设计,能够直接高效地处理类别特征,减少了数据预处理的繁琐步骤,同时
- LightGBM学习
亿只小灿灿
Python人工智能LightGBM
LightGBM是近年来在数据科学和机器学习领域备受瞩目的梯度提升框架,凭借高效的内存使用和极快的训练速度,在Kaggle竞赛和工业落地场景中大放异彩。接下来我将从它的技术原理、核心优势出发,结合丰富的示例代码,为你详细介绍这个强大的工具。一、LightGBM概述LightGBM(LightGradientBoostingMachine)由微软开发并开源,是基于梯度提升决策树(GBDT)算法的高效
- opencv八种跟踪算法
昊昊好好昊
opencvopencv算法
这八种算法包括:BOOSTINGTracker:和Haarcascades(AdaBoost)背后所用的机器学习算法相同,但是距其诞生已有十多年了。这一追踪器速度较慢,并且表现不好,但是作为元老还是有必要提及的。(最低支持OpenCV3.0.0)MILTracker:比上一个追踪器更精确,但是失败率比较高。(最低支持OpenCV3.0.0)KCFTracker:比BOOSTING和MIL都快,但是
- 集成思想在算法(目标检测)中的体现
pang企鹅
人工智能计算机视觉目标检测数学建模
集成思想在算法(目标检测)中的体现概述集成思想与分治思想共同构成了目标检测算法的两大核心设计哲学。两者的联系与区别在于:联系与区别维度分治思想集成思想核心思路垂直拆分问题水平协作优化执行路径独立求解→结果合并并行学习→协同决策优势领域复杂问题简化模型性能提升集成维度模型级集成,通过组合多个独立训练的检测模型,利用其互补性提升性能。典型方法:Bagging策略:多模型投票决策Boosting策略:迭
- 机器学习(11)——xgboost
追逐☞
机器学习机器学习人工智能
文章目录1.算法背景和动机1.1.提升算法(Boosting)1.2.XGBoost的改进动机2.算法基础3.核心创新3.4稀疏感知算法4.系统优化4.1列块(ColumnBlock)4.2缓存感知访问4.3外存计算5.算法细节5.1树生长策略5.2特征重要性评估5.3自定义目标函数6.关键参数详解6.1通用参数6.2提升器参数6.3学习任务参数7.与LightGBM对比8.实践建议9.代码示例1
- 机器学习——集成学习基础
m0_62060781
机器学习集成学习人工智能
一、鸢尾花数据训练模型1.使用鸢尾花数据分别训练集成模型:AdaBoost模型,GradientBoosting模型2.对别两个集成模型的准确率以及报告3.两个模型的预测结果进行可视化需要进行降维处理,两个图像显示在同一个坐标系中代码展示:fromsklearn.datasetsimportload_irisimportnumpyasnpimportpandasaspdimportmatplotl
- 【随机森林完全攻略】从原理到实战学习总结
大数据新兵蛋子
随机森林学习算法
一、随机森林核心:为什么它是“机器学习六边形战士”?1.集成算法的魔法:三个臭皮匠顶个诸葛亮装袋法(Bagging)核心:并行训练N棵决策树(基评估器),通过**多数表决(分类)或平均(回归)**输出结果,降低方差,专治决策树过拟合!例子:25棵树投票判断邮件是否为垃圾邮件,超过13棵树判断错误才会集成错误,错误率从单树20%暴跌至0.0369%!与Boosting的区别:维度随机森林(Baggi
- VSCode command management tool, shortcut command, command management tool
三岁时超帅哦
vscodeCommandManageQuickCommandsEfficiencyPlugins
RevolutionaryEfficiencyBoostingTool:VSCodeCommandManagerSayGoodbyetoRepetition,EmbraceEfficiency-QuickCommanderMakesYourDevelopmentWorkflowSmoothasSilkAreyoutiredofrepeatedlytypingthesamecommands?Doyo
- LightGBM算法核心原理与技术特性深度解析
彩旗工作室
人工智能算法机器学习人工智能
LightGBM(LightGradientBoostingMachine)是微软团队于2017年提出的高效梯度提升框架,专为大规模数据和高维特征场景设计。以下从核心原理、技术创新、性能对比及应用场景等维度展开理论性分析。一、核心原理与技术创新梯度提升框架的优化LightGBM基于梯度提升决策树(GBDT),通过迭代训练弱分类器(决策树)并加权组合,逐步修正预测误差。其核心改进在于对传统GBDT的
- 概率预测之NGBoost(Natural Gradient Boosting)回归和分位数(Quantile Regression)回归
人工都不智能了
boosting回归kotlin
概率预测之NGBoost(NaturalGradientBoosting)回归和线性分位数回归NGBoostNGBoost超参数解释NGBoost.fitscore(X,Y)staged_predict(X)feature_importances_pred_dist方法来获取概率分布对象分位数回归(QuantileRegression)smf.quantreg对多变量数据进行分位数回归分析概率预测
- 文件内容课堂总结
2301_79975534
人工智能
集成学习通过构建并结合多个学习器完成任务,结合策略有简单平均法和加权平均法,结果可通过投票法产生。集成学习分类包括:Bagging:个体学习器无强依赖关系,可并行生成,代表为随机森林。随机森林具有处理高维数据、给出特征重要性、并行化快、可可视化等优点。Boosting:个体学习器有强依赖关系,需串行生成(如AdaBoost),通过调整数据权重提升模型性能。Stacking:聚合多个分类或回归模型,
- gbdt总结
爱学习的uu
机器学习决策树人工智能数据挖掘
GBDTGBDT被写作梯度提升机器(GradientBoostingMachine,GBM),它融合了Bagging与Boosting的思想GBDT中自然也包含Boosting三要素:损失函数(,):用以衡量模型预测结果与真实结果的差异弱评估器():(一般为)决策树,不同的boosting算法使用不同的建树过程综合集成结果():即集成算法具体如何输出集成结果GBDT与ADABOOST的不同:1.弱
- 【机器学习|学习笔记】提升回归树(Gradient Boosting Regression Trees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络回归boosting人工智能
【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)文章目录【机器学习|学习笔记】提升回归树(GradientBoostingRegress
- 【python】基于nc数据文件实现XGBoost的多分类
傻傻虎虎
机器学习python分类机器学习xgboost
基于nc数据文件实现XGBoost的多分类XGBoost介绍库下载nc文件介绍模型搭建nc文件数据读取XGBoost的使用模型源码内容XGBoost介绍XGBoost(ExtremeGradientBoosting)是一种基于梯度提升决策树的机器学习算法。它是一种高效、灵活和可扩展的技术,而且在许多机器学习竞赛中都表现出色。该算法的主要思想是通过构建多个决策树模型来逐步改进预测结果,每一次迭代都会
- 机器学习: LightGBM模型(优化版)——高效且强大的树形模型
秀儿还能再秀
机器学习决策树LightBMGGBDT
LightGBM(LightGradientBoostingMachine)是一种基于梯度提升决策树(GBDT)的框架,由微软提出。它具有高效的训练速度、低内存占用、支持并行和GPU加速等特点,非常适合大规模数据的训练任务,尤其在分类和回归任务中表现突出。LightGBM的核心原理可以从以下几个方面来理解:LightGBM模型特点(一)基于梯度提升的树模型LightGBM是一个梯度提升决策树(GB
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23