农夫JOHN准备把他的 N(1 <= N <= 10,000)头牛排队以便于行动。因为脾气大的牛有可能会捣乱,JOHN想把牛按脾气的大小排序。每一头牛的脾气都是一个在1到100,000之间的整数并且没有两头牛的脾气值相同。在排序过程中,JOHN 可以交换任意两头牛的位置。因为脾气大的牛不好移动,JOHN需要X+Y秒来交换脾气值为X和Y的两头牛。 请帮JOHN计算把所有牛排好序的最短时间。
Input
第1行: 一个数, N。
第2~N+1行: 每行一个数,第i+1行是第i头牛的脾气值。
Output
第1行: 一个数,把所有牛排好序的最短时间。
Sample Input
3
2
3
1
输入解释:
队列里有三头牛,脾气分别为 2,3, 1。
Sample Output
7
输出解释:
2 3 1 : 初始序列
2 1 3 : 交换脾气为3和1的牛(时间=1+3=4).
1 2 3 : 交换脾气为1和2的牛(时间=2+1=3).
题解
置换群2333
来自novosbirsk的题解
1.找出初始状态和目标状态。明显,目标状态就是排序后的状态。
2.画出置换群,在里面找循环。例如,数字是8 4 5 3 2 7
明显,目标状态是2 3 4 5 7 8,能写为两个循环:
(8 2 7)(4 3 5)。
3.观察其中一个循环,明显地,要使交换代价最小,应该用循环里面最小的数字2,去与另外的两个数字,7与8交换。这样交换的代价是:
sum – min + (len – 1) * min
化简后为:
sum + (len – 2) * min
其中,sum为这个循环所有数字的和,len为长度,min为这个环里面最小的数字。
4.考虑到另外一种情况,我们可以从别的循环里面调一个数字,进入这个循环之中,使交换代价更小。例如初始状态:
1 8 9 7 6
可分解为两个循环:
(1)(8 6 9 7),明显,第二个循环为(8 6 9 7),最小的数字为6。我们可以抽调整个数列最小的数字1进入这个循环。使第二个循环变为:(8 1 9 7)。让这个1完成任务后,再和6交换,让6重新回到循环之后。这样做的代价明显是:
sum + min + (len + 1) * smallest
其中,sum为这个循环所有数字的和,len为长度,min为这个环里面最小的数字,smallest是整个数列最小的数字。
5.因此,对一个循环的排序,其代价是sum – min + (len – 1) * min和sum + min + (len + 1) * smallest之中小的那个数字。
6.我们在计算循环的时候,不需要记录这个循环的所有元素,只需要记录这个循环的最小的数及其和。
7.在储存数目的时候,我们可以使用一个hash结构,将元素及其位置对应起来,以达到知道元素,可以快速反查元素位置的目的。这样就不必要一个个去搜索。
#include#include #include #include #include #define ll long long #define inf 1000000000 using namespace std; inline ll read() { ll x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,gmn,cnt,ans; int v[10005],id[10005],disc[10005]; int mn[10005],sum[10005],len[10005]; bool vis[10005]; int find(int x) { int l=1,r=n; while(l<=r) { int mid=(l+r)>>1; if(disc[mid]>x)r=mid-1; else if(disc[mid]==x)return mid; else l=mid+1; } } void solve(int x) { vis[x]=1;cnt++; len[cnt]=1;sum[cnt]+=v[x];mn[cnt]=min(mn[cnt],v[x]); int now=x; while(v[id[now]]!=v[x]) { now=id[now];vis[now]=1; len[cnt]++;sum[cnt]+=v[now];mn[cnt]=min(mn[cnt],v[now]); } } int main() { memset(mn,127/3,sizeof(mn));gmn=inf; n=read(); for(int i=1;i<=n;i++) v[i]=read(),disc[i]=v[i],gmn=min(gmn,v[i]); sort(disc+1,disc+n+1); for(int i=1;i<=n;i++) id[i]=find(v[i]); for(int i=1;i<=n;i++) if(!vis[i]&&i!=id[i])solve(i); for(int i=1;i<=cnt;i++) { int t1=(len[i]-2)*mn[i]; int t2=mn[i]+(len[i]+1)*gmn; ans+=sum[i]+min(t1,t2); } printf("%d",ans); return 0; }