干货 | 一文带你搞懂常见分布式ID生成方案

干货 | 一文带你搞懂常见分布式ID生成方案_第1张图片

传统的单体架构的时候,我们基本是单库然后业务单表的结构。每个业务表的ID一般我们都是从1增,通过 AUTO_INCREMENT=1设置自增起始值,但是在分布式服务架构模式下分库分表的设计,使得多个库或多个表存储相同的业务数据。这种情况根据数据库的自增ID就会产生相同ID的情况,不能保证主键的唯一性。

干货 | 一文带你搞懂常见分布式ID生成方案_第2张图片

如上图,如果第一个订单存储在 DB1 上则订单 ID 为1,当一个新订单又入库了存储在 DB2 上订单 ID 也为1。我们系统的架构虽然是分布式的,但是在用户层应是无感知的,重复的订单主键显而易见是不被允许的。那么针对分布式系统如何做到主键唯一性呢?

UUID

UUID (Universally Unique Identifier),通用唯一识别码的缩写。UUID是由一组32位数的16进制数字所构成,所以UUID理论上的总数为 1632=2128,约等于 3.4 x 10^38。也就是说若每纳秒产生1兆个UUID,要花100亿年才会将所有UUID用完。

生成的UUID是由 8-4-4-4-12格式的数据组成,其中32个字符和4个连字符' - ',一般我们使用的时候会将连字符删除 uuid.toString().replaceAll("-","")

目前UUID的产生方式有5种版本,每个版本的算法不同,应用范围也不同。

  • 基于时间的UUID - 版本1:这个一般是通过当前时间,随机数,和本地Mac地址来计算出来,可以通过 org.apache.logging.log4j.core.util包中的 UuidUtil.getTimeBasedUuid()来使用或者其他包中工具。由于使用了MAC地址,因此能够确保唯一性,但是同时也暴露了MAC地址,私密性不够好。

  • DCE安全的UUID - 版本2DCE(Distributed Computing Environment)安全的UUID和基于时间的UUID算法相同,但会把时间戳的前4位置换为POSIX的UID或GID。这个版本的UUID在实际中较少用到。

  • 基于名字的UUID(MD5)- 版本3基于名字的UUID通过计算名字和名字空间的MD5散列值得到。这个版本的UUID保证了:相同名字空间中不同名字生成的UUID的唯一性;不同名字空间中的UUID的唯一性;相同名字空间中相同名字的UUID重复生成是相同的。

  • 随机UUID - 版本4根据随机数,或者伪随机数生成UUID。这种UUID产生重复的概率是可以计算出来的,但是重复的可能性可以忽略不计,因此该版本也是被经常使用的版本。JDK中使用的就是这个版本。

  • 基于名字的UUID(SHA1) - 版本5和基于名字的UUID算法类似,只是散列值计算使用SHA1(Secure Hash Algorithm 1)算法。

我们 Java中 JDK自带的 UUID产生方式就是版本4根据随机数生成的 UUID 和版本3基于名字的 UUID,有兴趣的可以去看看它的源码。


干货 | 一文带你搞懂常见分布式ID生成方案_第3张图片

得到的UUID结果,

59f51e7ea5ca453bbfaf2c1579f09f1d
7f49b84d0bbc38e9a493718013baace6

虽然 UUID 生成方便,本地生成没有网络消耗,但是使用起来也有一些缺点,

  • 不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。

  • 信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,暴露使用者的位置。

  • 对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能,可以查阅 Mysql 索引原理 B+树的知识。

数据库生成

是不是一定要基于外界的条件才能满足分布式唯一ID的需求呢,我们能不能在我们分布式数据库的基础上获取我们需要的ID?

由于分布式数据库的起始自增值一样所以才会有冲突的情况发生,那么我们将分布式系统中数据库的同一个业务表的自增ID设计成不一样的起始值,然后设置固定的步长,步长的值即为分库的数量或分表的数量。

以MySQL举例,利用给字段设置 auto_increment_incrementauto_increment_offset来保证ID自增。

  • autoincrementoffset:表示自增长字段从那个数开始,他的取值范围是1 .. 65535。

  • autoincrementincrement:表示自增长字段每次递增的量,其默认值是1,取值范围是1 .. 65535。

假设有三台机器,则DB1中order表的起始ID值为1,DB2中order表的起始值为2,DB3中order表的起始值为3,它们自增的步长都为3,则它们的ID生成范围如下图所示:

干货 | 一文带你搞懂常见分布式ID生成方案_第4张图片

通过这种方式明显的优势就是依赖于数据库自身不需要其他资源,并且ID号单调自增,可以实现一些对ID有特殊要求的业务。

但是缺点也很明显,首先它强依赖DB,当DB异常时整个系统不可用。虽然配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。还有就是ID发号性能瓶颈限制在单台MySQL的读写性能。

使用redis实现

Redis实现分布式唯一ID主要是通过提供像 INCR 和 INCRBY 这样的自增原子命令,由于Redis自身的单线程的特点所以能保证生成的 ID 肯定是唯一有序的。

但是单机存在性能瓶颈,无法满足高并发的业务需求,所以可以采用集群的方式来实现。集群的方式又会涉及到和数据库集群同样的问题,所以也需要设置分段和步长来实现。

为了避免长期自增后数字过大可以通过与当前时间戳组合起来使用,另外为了保证并发和业务多线程的问题可以采用 Redis + Lua的方式进行编码,保证安全。

Redis 实现分布式全局唯一ID,它的性能比较高,生成的数据是有序的,对排序业务有利,但是同样它依赖于redis,需要系统引进redis组件,增加了系统的配置复杂性。

当然现在Redis的使用性很普遍,所以如果其他业务已经引进了Redis集群,则可以资源利用考虑使用Redis来实现。

总结

以上列出了部分的分布式ID生成方式,其实大致分类的话可以分为两类:

一种是类DB型的,根据设置不同起始值和步长来实现趋势递增,需要考虑服务的容错性和可用性。

另一种是类snowflake型,这种就是将64位划分为不同的段,每段代表不同的涵义,基本就是时间戳、机器ID和序列数。这种方案就是需要考虑时钟回拨的问题以及做一些 buffer的缓冲设计提高性能。

而且可通过将三者(时间戳,机器ID,序列数)划分不同的位数来改变使用寿命和并发数。

例如对于并发数要求不高、期望长期使用的应用,可增加时间戳位数,减少序列数的位数. 例如配置成{"workerBits":23,"timeBits":31,"seqBits":9}时, 可支持28个节点以整体并发量14400 UID/s的速度持续运行68年.

对于节点重启频率频繁、期望长期使用的应用, 可增加工作机器位数和时间戳位数, 减少序列数位数. 例如配置成{"workerBits":27,"timeBits":30,"seqBits":6}时, 可支持37个节点以整体并发量2400 UID/s的速度持续运行34年.

你可能感兴趣的:(干货 | 一文带你搞懂常见分布式ID生成方案)