- Linux关闭swap分区操作[适用于CDH报警等]
NBA首席形象大使阿坤
大数据运维和开发#大数据集群linux运维hadoop
1.查看swap分区挂载路径(没卵用)swapon-s2.设置配置文件的swap配置echo“vm.swappiness=0”>/etc/sysctl.conf3.设置内存中的swap状态。有时候配置文件为0,但集群或服务仍然使用了swap分区,可能原因就是内存没有同步配置echo“0”>/proc/sys/vm/swappiness4.生效配置sysctl-p5.将/etc/fstab文件中所有
- 解读Layout Method of Met Mast Based on Macro Zoning and Micro Quantitative Siting in a Wind Farm
赵孝正
风资源与微观选址paper
目录1.风电场气象塔布局方法流程图(简略)内容细化2.风电场气象塔布局方法详细流程图(详细)核心算法和公式详解2.2解读流程(深入浅出)第一阶段:把大风电场分成几个小区域1.看看风在哪里吹得不一样️2.看看风机的位置分布️3.测量风机之间有多"像"4.用智能方法分区第二阶段:在每个区域内找到最好的位置放测量杆5.画格子找可能的位置6.用电脑模拟风的吹动7.筛选出好位置8.找出最最好的位置9.检验我
- 25年大数据开发省赛样题第一套,离线数据处理答案
Tometor
大数据sparkscala
省赛样题一,数据抽取模块这一模块的作用是从mysql抽取数据到ods层进行指标计算,在题目中要求进行全量抽取,并新增etl-date字段进行分区,日期为比赛前一天importorg.apache.spark.sql.SparkSessionimportjava.util.PropertiesobjectTask1{defmain(args:Array[String]):Unit={valspark
- CAP 公理解析:分布式系统中的一致性、可用性与分区容错性
Vitalia
系统设计分布式系统CAP
文章目录1.CAP公理的核心概念1.1一致性(Consistency)1.2可用性(Availability)1.3分区容错性(PartitionTolerance)2.CAP公理的三种选择2.1CA(一致性+可用性)2.2CP(一致性+分区容错性)2.3AP(可用性+分区容错性)3.CAP公理的实际应用3.1CP系统(一致性+分区容错性)示例1:ZooKeeper示例2:etcd3.2AP系统(
- shell脚本创建分区、格式化分区、转换分区
why—空空
运维
一、shell脚本代码#!/bin/bash#添加一个函数检查用户是否操作sda,如果用户操作sda直接退出脚本functionbd_sda(){if[["$cname"=="sda"]]thenecho"不能对磁盘sda进行操作"exit1fi}#创建分区函数functioncreate_pra(){localsize=$1#获取第一个参数:分区大小localxnum=$2#获取第二个参数,分区
- 磁盘和文件系统
IT小饕餮
linux基础运维linux服务器
磁盘管理及分区fdisk-l查看系统中的磁盘设备未查找到系统新接入的磁盘扫描重新加入的磁盘ls/sys/class/scsi_host##查询HBA总线编号###echo"---">/sys/class/scsi_host/host0/scan$$echo"---">/sys/class/scsi_host/host1/scan$$echo"---">/sys/class/scsi_host/ho
- 30个节点的Doris集群,每个节点有2块7TB的SSD盘,12块8TB的机械盘,分区和分桶的最佳实践
fzip
DorisDoris分区分桶
针对30个节点(每个节点配备2块7TBNVMe盘+12块8TBSATA盘)的Doris集群,以下是分区与分桶的最佳实践方案:一、硬件资源规划与存储优化存储介质分层•NVMe盘:用于存储热数据分区(如最近3天数据)、元数据和高频查询表,利用其高IOPS特性提升实时查询性能。•SATA盘:存储冷数据分区(如历史数据)、大宽表和批量导入的中间数据,通过成本优势支撑海量存储。磁盘负载均衡•每个节点的14块
- LINUX 磁盘和文件系统管理 (二)
好多知识都想学
linux
LVM管理命令常用的LVM管理命令PV(物理卷)、VG(卷组)、LV(逻辑卷)格式:pvcreate(pvdisplay、pvremove)[分区或磁盘位置]vgcreate[卷组名][物理卷位置][物理卷位置]vgremove[卷组名]vgextend[需要扩展卷组名][物理卷位置]lvcreate-L[容量大小]-n[逻辑卷名][卷组名]lvextend-L[+扩展大小]/dev/卷组名/逻辑
- 问deepseek: openfoam并行分区,数据交换逻辑解释
weixin_42849849
CFD/OpenFOAM数值计算/数值优化DeepSeek
在OpenFOAM中,并行计算通过将计算域分解为多个子域来实现,每个子域由一个独立的进程处理。并行分区和数据交换是确保计算正确性和效率的关键部分。以下是并行分区和数据交换逻辑的详细解释:1.并行分区并行分区是将计算域分解为多个子域的过程,每个子域由一个独立的MPI进程处理。OpenFOAM提供了多种分区工具,如decomposePar,支持以下分区方法:简单分区:将域均匀划分为若干块。层次分区:递
- Android 动态分区详解(四) OTA 中对动态分区的处理
洛奇看世界
Android动态分区Android虚拟A/B分区android动态分区
文章目录0.导读1.payload中的动态分区数据2.制作动态分区升级包2.1制作升级包2.2`dynamic_partition_info_file`参数2.3`dynamic_partitions_info.txt`文件2.4总结3.打包动态分区数据3.1解析动态分区数据3.2输出动态分区数据3.3动态分区数据打包流程4.解包并更新动态分区数据4.1设备处理接收到的Manifest数据4.2更
- STM32驱动OLED屏幕全解析:从原理到温度显示实战(中) | 零基础入门STM32第五十四步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件单片机驱动开发物联网
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED驱动架构设计二、关键函数解析(oled0561.c)2.1初始化函数OLED0561_Init2.2显示控制函数2.3清屏函数三、字符显示原理3.1单字符显示函数3.
- OLED屏幕开发全解析:从硬件设计到物联网显示实战 | 零基础入门STM32第五十二步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件驱动开发物联网单片机
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED屏幕核心特性解析二、OLED模块电路设计要点2.1硬件接口设计2.2电源设计规范三、OLED驱动开发关键技术3.1初始化流程设计3.2显示控制功能四、OLED字库生成
- 分布式架构的 CAP 定理、BASE 理论及其应用教程
宋发元
分布式架构
分布式架构的CAP定理、BASE理论及其应用教程在构建分布式系统时,数据一致性、系统可用性和网络分区容忍性是三个核心关注点。CAP定理和BASE理论为我们提供了指导原则,帮助在系统设计中进行合理权衡。本文将深入解析CAP定理和BASE理论,并结合实际应用案例,帮助你掌握在分布式架构中的应用策略。1.CAP定理:分布式系统的权衡法则1.1CAP定理概述CAP定理由EricBrewer提出,指出在一个
- ClickHouse优化技巧实战指南:从原理到案例解析
AAEllisonPang
Clickhouseclickhouse
目录ClickHouse优化核心思想表结构设计优化查询性能优化技巧数据写入优化方案系统配置调优实战高可用与集群优化真实案例解析总结与建议1.ClickHouse优化核心思想ClickHouse作为OLAP领域的明星引擎,其优化需遵循列式存储特性,把握以下原则:批量操作优于单行处理预计算替代实时计算数据有序存储提升检索效率利用硬件资源最大化吞吐量2.表结构设计优化2.1分区键选择选择低基数且高频过滤
- Linux 磁盘管理进阶:LVM 逻辑卷与磁盘配额
ρɾⅈꪀᥴꫀડ
linux服务器centos
Linux磁盘管理进阶:LVM逻辑卷与磁盘配额在Linux服务器管理中,普通分区方案可能会限制存储的灵活性。而LVM(逻辑卷管理)提供了一种动态调整存储空间的方式。此外,为了防止用户滥用磁盘资源,磁盘配额(Quota)也至关重要。本章将介绍LVM逻辑卷管理和磁盘配额配置。7.1LVM逻辑卷管理LVM(LogicalVolumeManager)允许动态管理存储空间,相比传统分区更具弹性,可随时扩展或
- 运维知识:Linux系统磁盘扩容和挂载实用命令
浩特-ht
运维linux阿里云
根据fdisk-l的输出,系统有两块磁盘:/dev/vda:已扩容至214.7GB,但分区/dev/vda1未扩展。/dev/vdb:107.4GB,未分区或未挂载。以下是对/dev/vda和/dev/vdb的扩容操作步骤:1.扩容/dev/vda1分区**1.1安装growpart工具如果未安装growpart,先安装:Bashyuminstallcloud-utils-growpart-y#C
- Android Low Storage机制(DeviceStorageMonitorService)
wd623894174
CommonFrameworkAndroid
文章目录1.lowstorage简介(DeviceStorageMonitorService)2.DeviceStorageMonitorService代码介绍2.1服务初始化2.2DeviceStorageMonitorInternal提供的接口2.3check()/data分区3监听lowStorage广播1.lowstorage简介(DeviceStorageMonitorService)D
- HBase2.6.1部署文档
CXH728
zookeeperhbase
1、HBase概述ApacheHBase是基于Hadoop分布式文件系统(HDFS)之上的分布式、列存储、NoSQL数据库。它适合处理结构化和半结构化数据,能够存储数十亿行和数百万列的数据,并支持实时读写操作。HBase通常应用于需要快速随机读写、低延迟访问以及高吞吐量的场景,例如大规模日志处理、社交网络数据存储等。HBase特性列存储模型:HBase的数据是按列族存储的,适合高稀疏数据。行键分区
- 大数据面试之路 (二) hive小文件合并优化方法
愿与狸花过一生
大数据大数据hivehadoop
大量小文件容易在文件存储端造成瓶颈,影响处理效率。对此,您可以通过合并Map和Reduce的结果文件来处理。一、合并小文件的常见场景写入时产生小文件:Reduce任务过多或数据量过小,导致每个任务输出一个小文件。动态分区插入:分区字段基数高,每个分区生成少量数据,形成大量小文件。频繁追加数据:通过INSERTINTO多次追加数据,导致文件碎片化。二、合并小文件的核心方法方法1:调整Reduce任务
- Oracle数据库深度优化实战指南:从SQL到架构的全维度调优
AAEllisonPang
jvm
目录性能优化方法论1.1性能优化黄金三角(SQL/实例/架构)1.2常用诊断工具全景图(AWR/ASH/SQLMonitor)SQL语句调优实战2.1执行计划深度解析2.2全表扫描灾难案例2.3绑定变量陷阱解决方案索引优化策略3.1索引失效七大场景3.2函数索引实战应用实例参数优化4.1内存管理核心参数4.2连接风暴抑制方案架构设计优化5.1分区表设计陷阱5.2物化视图加速案例统计信息管理6.1统
- 管理存储堆栈
上邪o_O
RedhatLinux知识点linux
分别说明LVM中物理卷、物理区块、卷组、逻辑卷的概念以及它们之间的关系。物理卷是LVM的基础,它可以是整个物理磁盘,也可以是磁盘上的一个分区。物理卷是LVM管理的最小物理存储单元,它被初始化为LVM可以识别的格式,包含了LVM的元数据。物理区块是物理卷中可分配的最小存储单元。在创建卷组时,会指定物理区块的大小。物理卷被划分为多个大小相等的物理区块,这些物理区块可以被分配给逻辑卷使用。卷组是由一个或
- H100架构解析与性能优化策略
智能计算研究中心
其他
内容概要NVIDIAH100GPU作为面向高性能计算与人工智能领域的旗舰级产品,其架构设计与优化策略在计算效率、显存带宽及并行任务处理等方面实现了显著突破。本文将从核心架构创新与典型场景调优两个维度展开:首先解析第三代TensorCore的稀疏计算加速机制、FP8混合精度支持特性及其对矩阵运算的优化效果;其次,针对显存子系统中HBM3堆栈布局、L2缓存分区策略以及数据预取算法的协同优化进行拆解;最
- Java 三路快排
18你磊哥
java基础学习java
三路快速排序(3-WayQuickSort)是快速排序的优化版本,特别适用于处理包含大量重复元素的数组。其核心思想是将数组划分为三个区域:小于基准值、等于基准值和大于基准值,从而减少不必要的递归和交换三路快排原理分区逻辑:使用三个指针lt(lessthan)、current(当前遍历位置)、gt(greaterthan)将数组划分为三部分:[low,lt-1]:小于基准值的元素[lt,gt]:等于
- 大数据面试之路 (一) 数据倾斜
愿与狸花过一生
大数据面试职场和发展
记录大数据面试历程数据倾斜大数据岗位,数据倾斜面试必问的一个问题。一、数据倾斜的表现与原因表现某个或某几个Task执行时间过长,其他Task快速完成。Spark/MapReduce作业卡在某个阶段(如reduce阶段),日志显示少数Task处理大量数据。资源利用率不均衡(如CPU、内存集中在某些节点)。常见场景Key分布不均:如某些Key对应的数据量极大(如用户ID为空的记录、热点事件)。数据分区
- 个人NAS方案,终端字符界面浏览器
耶耶耶耶耶~
其它NAS
文章目录前言需求分析Linux配置smb服务-Linux服务端配置-windows客户端配置Linux安装流媒体服务在终端界面中浏览网页references前言个人nas需要满足的需求:可以通过浏览器访问nas中的文件、图片、视频支持像访问本地分区一样访问nas,对应用程序来讲文件在nas和本地是透明的需求分析硬件方面可用arm开发版+外置大硬盘软件方面采用Linux系统+一系列服务程序实现总结一
- 从零打造工业级智能二维码识别系统:基于PyQt5与ZXingCpp的实战指南
蜡笔小新星
PyQt5qt开发语言python图像处理经验分享pyqt扫码读码解码
文章目录第一章:系统全景解析1.1实时识别工作流图解1.2界面布局与功能分区说明1.3代码文件结构树形图第二章:环境搭建与依赖管理2.1必需组件清单2.2虚拟环境配置步骤2.3摄像头硬件检测方法第三章:多线程视频采集3.1VideoThread类设计剖析3.2图像采集核心循环3.3线程安全停止机制3.4信号槽通信实例第四章:图像预处理流水线4.1预处理方法开关实现4.2自适应二值化算法4.3图像格
- Linux管理磁盘分区
IT小馋猫
linux运维服务器
一、规划磁盘中的分区在磁盘设备中创建、删除、更改分区fdisk/列出磁盘分区信息进入分区管理界面命令/fdisk-lfdisk/dev/sdb命令/列出磁盘分区情况创建分区命令/pn命令/删除分区更改分区类型命令/dt命令/保存分区操作不保存退出命令/wqFdisk命令的参数:m:查看各种操作指令的帮助信息p:列出硬盘中的分区情况n:创建分区-t:变更分区的类型d:删除分区w:保存并退出q:不保存
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- Kafka、RabbitMQ、RocketMQ的区别
种豆走天下
kafkarabbitmqrocketmq
Kafka、RabbitMQ、和RocketMQ都是广泛使用的消息中间件,它们各自有不同的特点、架构设计和应用场景。下面是它们之间的主要区别:1.架构设计Kafka:Kafka是一个分布式流处理平台,最初由LinkedIn开发,主要用于处理大规模数据流。Kafka的架构包括Producer(生产者)、Consumer(消费者)、Broker(代理)和Topic(主题)。Kafka使用分区和副本来提
- Apache Kafka 实践:优化与脚本操作指南
无畏道人
本文还有配套的精品资源,点击获取简介:本文深入探讨了ApacheKafka核心概念及其在IT环境中的应用,特别是与Shell脚本的关联。ApacheKafka是一个分布式流处理平台,通过主题和分区的结构提供高吞吐量和低延迟的消息处理。文章介绍了Kafka架构、生产者和消费者的角色、Shell脚本与Kafka的交互,以及Kafka命令行工具的使用。同时,还涉及了Kafka的配置选项,例如数据持久化策
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_