Java泛型

泛型类

public class Container {
    private K key;
    private V value;

    public Container(K k, V v) {
        key = k;
        value = v;
    }

    public K getKey() {
        return key;
    }

    public void setKey(K key) {
        this.key = key;
    }

    public V getValue() {
        return value;
    }

    public void setValue(V value) {
        this.value = value;
    }
}

在编译期,是无法知道K和V具体是什么类型,只有在运行时才会真正根据类型来构造和分配内存。

泛型接口

在泛型接口中,生成器是一个很好的理解,看如下的生成器接口定义:

public interface Generator {
    public T next();
}

然后定义一个生成器类来实现这个接口:

public class FruitGenerator implements Generator {

    private String[] fruits = new String[]{"Apple", "Banana", "Pear"};

    @Override
    public String next() {
        Random rand = new Random();
        return fruits[rand.nextInt(3)];
    }
}

泛型方法

一个基本的原则是:无论何时,只要你能做到,你就应该尽量使用泛型方法。也就是说,如果使用泛型方法可以取代将整个类泛化,那么应该有限采用泛型方法。下面来看一个简单的泛型方法的定义

public class Main {

    public static  void out(T t) {
        System.out.println(t);
    }

    public static void main(String[] args) {
        out("findingsea");
        out(123);
        out(11.11);
        out(true);
    }
}

可以看到方法的参数彻底泛化了,这个过程涉及到编译器的类型推导和自动打包,也就说原来需要我们自己对类型进行的判断和处理,现在编译器帮我们做了。这样在定义方法的时候不必考虑以后到底需要处理哪些类型的参数,大大增加了编程的灵活性。

再看一个泛型方法和可变参数的例子:

public class Main {

    public static  void out(T... args) {
        for (T t : args) {
            System.out.println(t);
        }
    }

    public static void main(String[] args) {
        out("findingsea", 123, 11.11, true);
    }
}

是用来规范T的,例如就规定了边界,即规定了所有出现T的地方,T类型必须是Object的子类

泛型通配符

  • ? 通配符类型
  • 表示类型的上界,表示参数化类型的可能是T 或是 T的子类
  • 表示类型下界(Java Core中叫超类型限定),表示参数化类型是此类型的超类型(父类型),直至Object

extends 可用于的返回类型限定,不能用于参数类型限定。
super 可用于参数类型限定,不能用于返回类型限定。
带有super超类型限定的通配符可以向泛型对易用写入,带有extends子类型限定的通配符可以向泛型对象读取。

你可能感兴趣的:(Java泛型)