神经网络可视化《Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization》

神经网络已经在很多场景下表现出了很好的识别能力,但是缺乏解释性一直所为人诟病。《Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization》这篇论文基于梯度为其可解释性做了一些工作,它可以显著描述哪块图片区域对识别起了至关重要的作用,以热度图的方式可视化神经网络的注意力。本博客主要是基于pytorch的简单工程复现。原文见这里,本代码基于这里。

  1 import torch
  2 import torchvision
  3 from torchvision import models
  4 from torchvision import transforms
  5 from PIL import Image
  6 import pylab as plt
  7 import numpy as np
  8 import cv2
  9 
 10 
 11 class Extractor():
 12     """ 
 13     pytorch在设计时,中间层的梯度完成回传后就释放了
 14     这里用hook工具在保存中间参数的梯度
 15     """
 16     def __init__(self, model, target_layer):
 17         self.model = model
 18         self.target_layer = target_layer
 19         self.gradient = None
 20 
 21     def save_gradient(self, grad):
 22         self.gradient=grad
 23 
 24     def __call__(self, x):
 25         outputs = []
 26         self.gradients = []
 27         for name,module in self.model.features._modules.items():
 28             x = module(x)
 29             if name == self.target_layer:
 30                 x.register_hook(self.save_gradient)
 31                 target_activation=x
 32         x=x.view(1,-1)
 33         for name,module in self.model.classifier._modules.items():
 34             x = module(x)
 35         # 维度为(1,c, h, w) , (1,class_num)
 36         return target_activation, x
 37 
 38 
 39 def preprocess_image(path):
 40     means=[0.485, 0.456, 0.406]
 41     stds=[0.229, 0.224, 0.225]
 42     m_transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize(means,stds)])
 43     img=Image.open(path)
 44     return m_transform(img).reshape(1,3,224,224)
 45 
 46 
 47 class GradCam():
 48     def __init__(self, model, target_layer_name, use_cuda):
 49         self.model = model
 50         self.model.eval()
 51         self.cuda = use_cuda
 52         if self.cuda:
 53             self.model = model.cuda()
 54 
 55         self.extractor = Extractor(self.model, target_layer_name)
 56 
 57     
 58     def __call__(self, input, index = None):
 59         if self.cuda:
 60             target_activation, output = self.extractor(input.cuda())
 61         else:
 62             target_activation, output = self.extractor(input)
 63 
 64         # index是想要查看的类别,未指定时选择网络做出的预测类
 65         if index == None:
 66             index = np.argmax(output.cpu().data.numpy())
 67 
 68         # batch维为1(我们默认输入的是单张图)
 69         one_hot = np.zeros((1, output.size()[-1]), dtype = np.float32)
 70         one_hot[0][index] = 1.0
 71         one_hot = torch.tensor(one_hot)
 72         if self.cuda:
 73             one_hot = torch.sum(one_hot.cuda() * output)
 74         else:
 75             one_hot = torch.sum(one_hot * output)
 76 
 77         self.model.zero_grad()
 78         one_hot.backward(retain_graph=True)
 79 
 80         grads_val = self.extractor.gradient.cpu().data.numpy()
 81          # 维度为(c, h, w)
 82         target = target_activation.cpu().data.numpy()[0]
 83         # 维度为(c,)
 84         weights = np.mean(grads_val, axis = (2, 3))[0, :]
 85         # cam要与target一样大
 86         cam = np.zeros(target.shape[1 : ], dtype = np.float32)
 87         for i, w in enumerate(weights):
 88             cam += w * target[i, :, :]
 89 
 90         # 每个位置选择c个通道上最大的最为输出
 91         cam = np.maximum(cam, 0)
 92         cam = cv2.resize(cam, (224, 224))
 93         cam = cam - np.min(cam)
 94         cam = cam / np.max(cam)
 95         return cam
 96 
 97 
 98 def show_cam_on_image(img, mask):
 99     heatmap = cv2.applyColorMap(np.uint8(255*mask), cv2.COLORMAP_JET)
100     heatmap = np.float32(heatmap) / 255
101     cam = heatmap + np.float32(img)
102     cam = cam / np.max(cam)
103     cv2.imwrite("cam2.jpg", np.uint8(255 * cam))
104 
105 
106 #target_layer 越靠近分类层效果越好
107 grad_cam = GradCam(model = models.vgg19(pretrained=True), target_layer_name = "35", use_cuda=True)
108 input = preprocess_image("both.png")
109 mask = grad_cam(input, None)
110 img = cv2.imread("both.png", 1)
111 #热度图是直接resize加到输入图上的
112 img = np.float32(cv2.resize(img, (224, 224))) / 255
113 show_cam_on_image(img, mask)

原图:

神经网络可视化《Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization》_第1张图片

可视化图:

神经网络可视化《Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization》_第2张图片

 

你可能感兴趣的:(神经网络可视化《Grad-CAM:Visual Explanations from Deep Networks via Gradient-based Localization》)